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ABSTRACT

Training large AI models is computationally intensive. State-of-the-art language and vision mod-
els (LLMs and VLMs) often require thousands of GPUs and weeks or even months of training. As
models scale to meet the demands of modern applications, efficient distributed training becomes es-
sential, yet remains highly complex. No single distributed training configuration (or t7aining recipe)
works across all combinations of model architectures, hardware platforms, and data modalities.
Practitioners must explore a vast configuration space through costly trial and error, often building
and tuning implementations manually. Even then, out-of-memory errors and sub-optimal per-
formance are common. This complexity is further compounded by the difficulty of synthesizing
efficient implementations for selected configurations. Existing frameworks are fragmented across
disparate libraries, lack interoperability, and are difficult to maintain, making the development, eval-
uation, and reuse of training recipes a significant engineering burden.

This thesis introduces LEGOALI, a system that transforms distributed Al training into an auto-
mated, scalable, and modular process. Given a model, dataset, and hardware configuration, LEGOAI
automatically selects the optimal distributed training configuration and generates a production-
ready implementation that scales to thousands of GPUs. At its core, LEGOAI serves as a synthesis
engine: it decomposes state-of-the-art training strategies into modular, composable design principles
and unifies them within a single coherent framework. In doing so, LEGOAI exposes a vast configura-

tion space that comprises not only existing state-of-the-art algorithms but also entirely new designs
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beyond them. Through high-fidelity simulation, it predicts memory usage and runtime without
requiring execution, enabling fast and safe exploration of the configuration space. Finally, for the
empirically optimal configuration, it synthesizes an efficient and scalable implementation. In addi-
tion to exploring, comparing, and deploying state-of-the-art algorithms, LEGo Al enables full-stack
research by analyzing and synthesizing entirely new training algorithms derived from the design
space through the composition of existing design principles.

We evaluate LEcoAl across diverse models, GPU types (A100, H100), and interconnects (Infini-
Band, RoCE), demonstrating strong scalability, accurate simulation, and eftective policy synthesis.
LEGoAI achieves speedups of 65.08%, 12.59%, and 30% over optimized baselines on LLaMA 3.1
models at 128, 256, and 512 GPU scales, respectively. It predicts runtime with over 90% accuracy
and memory usage with 99.9% accuracy across hardware configurations. To demonstrate LEGOAI’s
research capabilities, we synthesize new memory-efficient training algorithms based on recomputa-
tion that reduce overhead by up to 90% compared to baselines, while achieving superior compute-
memory trade-offs by matching ILP-optimal solutions and running over 100X faster.

Thus, LEGOAL is the first system to unify the synthesis, simulation, and deployment of dis-
tributed training strategies, significantly reducing cost, complexity, and uncertainty while enabling

broader and more efficient exploration of the large-scale AI training design space.
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Introduction

1.1 MOTIVATION

AI models are the driving force behind a wide range of applications. Large Language Models
(LLMs) (Devlin, 2018; Liu et al., 2019; Radford et al., 2019; Chowdhery et al., 2023; Anil et al.,
2023; Achiam et al., 2023; Dubey et al., 2024; Jiang et al., 2024; Abdin et al., 2024) have been the

driving force behind the advancement of natural language processing (NLP) applications spanning



language translation, content/code generation, conversational Al text data analysis, creative writ-
ing and art, education, and research, etc. At the same time Large Vision Models (LVMs) (Ilharco
etal, 2021; Rombach et al,, 2021; Li et al., 2024a; Meta Al, 2024; Labs, 2024) have been central to
progress in image recognition, visual alignment, multimodal interaction, and prompt-based image
generation.

Training Al models is computationally expensive. Achieving state-of-the-art performance in
large language models (LLM:s) requires extreme computational scale and investment. For example,
Llama 3.1 was trained with 405 billion parameters on 15 trillion tokens, consuming 30.84 million
GPU hours across 16,000 H100 GPUs (Dubey et al., 2024), while Google’s PALM used 540 bil-
lion parameters and 0.8 trillion tokens, requiring 9.4 million TPU hours across 6,144 TPUv4 chips
(Chowdhery et al., 2023). These models showcase remarkable capabilities in language understand-
ing and generation, but also highlight the steep memory, compute, and time requirements needed
to train at this scale. As models continue to grow in size and complexity, these costs extend across
domains, often reaching millions of GPU hours and significant financial overhead. Reducing the
time, resource usage, and cost of training has become a critical challenge for sustainable and scalable
Al development.

Distributed training is essential to scale large models across thousands of GPUs, with no
single recipe being universally optimal. For example, Llama 3.1 (405B) was trained using 4D par-
allelism comprising 8-way Tensor, 16-way Context, 16-way Pipeline, and 8-way Fully Sharded Data
Parallelism across 16,000 GPUs. In contrast, PALM (540B) was trained on 6,144 TPUs using 3D
parallelism with 12-way Tensor, 256-way Fully Sharded Data, and 2-way Data Parallelism. Despite
their similar scale, the two models used distinct strategies due to differences in architecture, size, and
hardware.

Efficient distributed training requires stacking several techniques, often with complex

trade-offs. Training large language models (LLM:s) at scale is a daunting task that requires a delicate



balance of parallelism, computation, and communication, all while navigating intricate memory and
computation trade-offs. The massive resources required for training make it prone to GPU failures,
underscoring the need for efficient recovery mechanisms and checkpointing strategies to minimize
downtime (Eisenman et al., 2022; Wang et al., 2023; Gupta et al., 2024; Maurya et al., 2024; Wan
etal., 2024). To optimize resource utilization and achieve elastic scalability, it is crucial to combine
multiple parallelism techniques, including Data Parallel (DDP, HSDP and FSDP) (Li et al., 2020;
Rajbhandari et al., 2020; Zhang et al., 2022a; Zhao et al., 2023), Tensor Parallel (TP) (Narayanan
etal., 2021; Wang et al., 2022; Korthikanti et al., 2023), Context Parallel (CP) (Liu et al., 2023; Liu
& Abbeel, 2024; NVIDIA, 2023; Fang & Zhao, 2024), and Pipeline Parallel (PP) (Huang et al.,
2019b; Narayanan et al., 2019, 2021; Tang et al., 2024b). By stacking these parallelisms with mem-
ory and computation optimization techniques, such as activation recomputation (Chen et al., 2016;
Korthikanti et al., 2023; He & Yu, 2023; Purandare et al., 2023), mixed precision training (Mi-
cikevicius et al., 2018, 2022), and deep learning compilers (Bradbury et al., 2018; Yu et al., 2023; Li
etal., 2024b; Ansel et al., 2024b), it is possible to maximize hardware utilization.

Discovering an effective training recipe requires expert intuition and extensive experi-
mentation. While existing systems support a broad range of distributed training techniques, they
also expose a large number of configuration options, including parallelism dimensions, sharding
strategies, precision modes, and memory trade-offs. Choosing the right combination of techniques,
referred to as a training recipe, for a given model, data batch, hardware setup, and performance ob-
jective is highly non-trivial. This process is highly context-dependent and typically demands expert
intuition, deep system knowledge, and substantial iterative experimentation.

Training under sub-optimal configurations can significantly increase training time and re-
source consumption. Even when frameworks support a wide range of optimization techniques,
using them ineffectively can be extremely costly. Consider our earlier examples: LlaMA 3.1 (405B)

and PalLM (540B), which consumed 30.84 million GPU hours and 9.4 million TPU hours, re-



Table 1.1: Cost and experiment counts per model size (in k$) for 3,306 experiments, resulting in a total estimated cost of
$469.17K.

Experiments per node config

1 2 4 8 16 32 64

Model (B) Cost (k$)

1.34 10734 65 120 127 149 158 111 78
3.57 11978 63 117 126 148 176 118 94
8.86 119.95 61 116 122 145 176 122 93
80.0 12210 57 87 125 150 185 122 95

spectively. Hypothetically, if these models were trained using configurations that are just 10 to 25%
slower than an optimally tuned setup Tazi et al. (2025), this would result in an additional 3.08 to
7.71 million GPU hours or 0.94 to 2.35 million TPU hours. These inefficiencies translate directly
into substantial financial costs and increased environmental impact due to unnecessary energy con-
sumption.

Crafting the best training recipe requires costly exploration of the performance space.
Identifying an optimal training recipe, which consists of a combination of parallelism strategies,
memory optimizations, and precision settings for a given model, dataset, and hardware configu-
ration, is a complex and expensive process. The configuration space is large and filled with highly
sensitive parameters that must be tuned to balance cost, accuracy, communication overhead, and
computational efficiency. Even with modern tooling, this remains an iterative trial-and-error process
that requires multiple full or partial training runs on GPU clusters. Each run involves job schedul-
ing, execution, metric collection, and debugging. Frequent runtime failures, such as out-of-memory
errors, further increase overhead. As models grow and training scales to hundreds or thousands of
GPUs, this level of empirical exploration becomes increasingly impractical and motivates the need
for automated and simulation-driven approaches.

Case Study: Exhaustive benchmarking for training configuration selection is prohibitively

expensive.
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Figure 1.1: Huggingface performance benchmarking of 1,728 out of 3,306 training runs reveals significant variance in
throughput and peak memory consumption, highlighting the impact of training configurations.

To illustrate the cost and complexity of empirical exploration, we highlight a performance bench-
marking study conducted by Huggingface (Tazi et al., 2025), which evaluated training configura-
tions for LLaM A models of various sizes (1.34B, 3.57B, 8.86B, and 80B parameters). The study
maintained a fixed global batch size of 256 and sequence length of 4096, and systematically varied
key parameters such as the number of nodes (ranging from 1 to 64), degrees of data parallelism (1
to 256), tensor parallelism (1 to 32), pipeline parallelism (1 to 128), gradient accumulation steps (1
to 256), micro-batch size (1 to 256), and ZeR O sharding strategies (stage 0 and 1). A total of 3,306
configurations were benchmarked on a cluster with up to 512 NVIDIA H100 GPUs (8 GPUs per
node), with 1,728 runs completing successfully and 1,578 failing due to crashes or out-of-memory
(OOM) errors.

The results reveal three major insights. First, training performance and memory efficiency are
highly sensitive to configuration choices. As shown in Figure 1.1, throughput and peak memory
usage vary significantly across configurations. Trade-offs are inherent; for example, activation check-
pointing reduces memory usage at the cost of recomputation, while tensor or fully shared data paral-
lelism improves memory distribution but increases synchronization overhead. Inefficient overlap of

computation and communication can further degrade performance, making configuration selection



highly non-trivial.

Second, failure modes such as OOM errors are frequent and offer little diagnostic value. Out of
3,306 runs, 1,578 failed due to memory exhaustion, resulting in substantial waste of resources and
no actionable insights for tuning future configurations.

Third, the financial cost of empirical benchmarking is substantial. The study incurred an esti-
mated total cost of $469.17K, assuming a cost of $98.5 per node-hour™ and a runtime of five min-
utes per experiment. Table 1.1 provides a detailed breakdown by model size and node count.

Despite fixing multiple parameters, including batch size, sequence length, precision mode, and
activation checkpointing strategy, the study required thousands of runs to explore only a narrow
slice of the full configuration space. Expanding this search to include additional models and opti-
mization techniques would drastically increase both cost and complexity, reinforcing the need for
automated and simulation-based approaches to training configuration selection.

Current Distributed Training Frameworks Fall Short: Gaps in Composability, Breadth,
Flexibility, and Efficiency. Exacerbating the challenge of discovering an optimal training recipe
is the difficulty of engineering an efficient implementation for a given configuration. Despite ad-
vances in distributed training techniques, existing frameworks struggle to support their full breadth
and composability. Most systems are non-composable, making it hard to stack multiple parallelism
strategies alongside memory and compute optimizations, which limits both efficiency and design
space exploration. Their architectures often lack flexibility and modularity, impeding integration
of new techniques, hardware targets, and evolving software optimizations. Many frameworks un-
derutilize advanced hardware features, offer limited support for customizable checkpointing, and
exhibit sub-optimal GPU efficiency. In production, they lack scalable distributed checkpointing,

robust failure recovery, and effective debugging tools. Additionally, many rely on poorly main-

*Cost estimate based on AWS EC2 p5.48xlarge (8 x H100) on-demand pricing (CloudPrice.net, 2025).
The total expenditure was estimated using the formula: Cost = Number of Experiments x Nodes x 98.5 x
(%), assuming five minutes per experiment.



tained external dependencies and fail to fully leverage PyTorch’s native optimizations, compiler
infrastructure, and kernel support, leading to inefficiencies and compatibility challenges across the

stack.

1.2 THEsIS PROBLEM AND THESIS STATEMENT

1.2.1 PROBLEM

Given a specific training context consisting of a model architecture, dataset, and hardware platform,
automatically and efficiently identify the empirically optimal distributed training configuration,
which spans parallelism strategies, memory optimizations, and precision settings, and generate a

corresponding implementation that maximizes throughput while satisfying hardware constraints.

1.2.2 STATEMENT

This thesis introduces LEGOALI, a system that transforms distributed Al training into an automated,
scalable, and modular process. Given a model, dataset, and hardware configuration, LEGOAI auto-
matically selects the optimal distributed training configuration and generates a production-ready
implementation that scales to thousands of GPUs. At its core, LEGOAI serves as a synthesis engine:
it decomposes state-of-the-art training strategies into modular, composable design principles and
unifies them within a single coherent framework. In doing so, LEGOAI exposes a vast configura-
tion space that comprises not only existing state-of-the-art algorithms but also entirely new designs
beyond them. Through high-fidelity simulation, it predicts memory usage and runtime without
requiring execution, enabling fast and safe exploration of the configuration space. Finally, for the
empirically optimal configuration, it synthesizes an efficient and scalable implementation.

LEGOAI consists of two core subsystems:



1. TorcHTITAN, a unified and production-grade distributed training framework that supports
modular and composable four-dimensional parallelism with elastic scaling. TORCHTITAN con-
solidates advanced parallelism strategies into a single abstraction that simplifies implementation,
benchmarking, and the development of new training algorithms.

2. TorcHSIM, a simulation-based predictor that estimates memory usage and runtime for arbi-
trary training configurations. TORCHSIM combines analytical models with learned cost functions
to emulate GPU execution at the operator level, generalizing across model architectures, parallelism

schemes, hardware types, and interconnect topologies.

To demonstrate the extensibility of LEGoAI and its capability to support new research, we intro-
duce AuTO-SAC, a scalable algorithm that uses TORCHSIM ’s fine-grained predictions to generate
optimal selective activation checkpointing (SAC) strategies. Integrated into TorRCHTITAN, AUTO-
SAC highlights LEGoAI ’s ability to unify simulation, synthesis, and deployment within a single

system.

1.3 TorcHTITAN: A UNIFIED, MODULAR, COMPOSABLE, AND SCALABLE DISTRIBUTED

TRAINING FRAMEWORK

Although distributed training techniques have progressed significantly, current frameworks fall
short of generating efficient implementations for arbitrary distributed training configurations. They
are limited in integration, usability, and extensibility, constraining their utility in both research and

production workflows.



1.3.1 EXISTING SYSTEMS STRUGGLE TO SUPPORT FULL BREADTH AND COMPOSABILITY

FOR DISTRIBUTED TRAINING

Several frameworks provide APIs for building distributed training workflows, including Megatron-
LM (Narayanan et al., 2021), DeepSpeed (Rasley et al., 2020), veScale (Inc., 2024), Slapo (Chen
etal., 2023), and PyTorch Distributed (Paszke et al., 2019; Meta Platforms, Inc., 2024). However,
these systems exhibit significant limitations in flexibility, integration, and scalability. Megatron-LM
requires intrusive model modifications to work with TransformerEngine, lacks seamless integration
of Fully Sharded Data Parallel (FSDP) with tensor and pipeline parallelism, and does not support
advanced pipeline schedules to reduce computation overhead. DeepSpeed depends on Megatron-
LM for tensor and context parallelism and offers only limited support for FSDP and advanced
pipeline scheduling. veScale does not support FSDP, context parallelism, selective activation check-
pointing, Float8 training, or the PyTorch torch. compile backend, and provides only three pipeline
schedules in contrast to the six available in TorcHTITAN. Slapo introduces a schedule language to
express training optimizations such as three-dimensional parallelism and supports progressive ap-
plication of high-level transformations, but still lacks full integration with diverse parallelism and
optimization strategies. These limitations restrict composability and hinder systematic exploration

of the training configuration space, both of which are critical for scalable and efficient model train-

ing.

1.3.2 TowARD COMPOSABLE DISTRIBUTED TRAINING: DTENSOR AND DEVICEMESH

AS FIRST-CLASS PRIMITIVES

Root cause: Lack of unified tensor and device abstractions across the stack. A central reason for
the non-composability and rigidity of existing distributed training frameworks is the absence of uni-

fied tensor and device abstractions that span the entire software stack. Without such foundational



components, parallelism strategies, checkpointing mechanisms, and performance optimizations
remain fragmented and ad hoc. This fragmentation limits modularity, restricts scalability, and com-
plicates extensibility, making it difficult to build systems that can flexibly combine multiple training
techniques or adapt to evolving hardware environments.

Using DTensor and DeviceMesh as foundational building blocks. To address this, we adopt
PyTorch’s Distributed Tensor (DTensor) and DeviceMesh as core primitives for structuring dis-
tributed computation. The DeviceMesh provides a logical organization of the compute cluster by
arranging devices into a multi-dimensional grid, where each dimension corresponds to a distinct
parallelism strategy. It manages process group creation and device communication across these di-
mensions in a unified and scalable manner.

DTensor is a distributed tensor that is sharded along one or more dimensions of the DeviceMesh
and encodes its sharding specification. It supports sharding propagation, which automatically car-
ries sharding metadata through tensor operations. This enables the composition of multiple forms
of parallelism without requiring manual tracking or user intervention. When a sharded tensor is
used as input, output tensors inherit the correct sharding behavior by default. DTensor also sup-
ports collective operations in sharded contexts, preserving semantic correctness and enabling reli-

able, deterministic execution across devices.

1.3.3 SoruUTION: REDESIGNING DISTRIBUTED TRAINING FROM FIRST PRINCIPLES

TorcHTITAN ’s key contribution is the unification of distributed parallelism and optimization
techniques within a cohesive and extensible framework. By building on and extending PyTorch’s
DTensor and DeviceMesh abstractions (Py Torch Community, 2023b), TorRCHTITAN provides a
unified representation of distributed training that simplifies the composition of parallelism strate-
gies and preserves consistent single-device semantics through principled sharding primitives. In

contrast to prior systems that rely on rigid or task-specific implementations, TORCHTITAN offers a
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systematic foundation for distributed execution. This enables rigorous exploration of configuration
options, robust benchmarking of existing methods, and the discovery of new strategies across the
broader design space.

TorcHTITAN is a full-fledged distributed training system for large language models (LLMs), not
merely a collection of isolated techniques. Its modular and extensible architecture supports seam-
less integration of four-dimensional parallelism, advanced optimization techniques, and scalable
checkpointing mechanisms, all while leveraging native PyTorch capabilities. The system is designed
for production-scale training on thousands of GPUs, while also reducing integration complexity
and accelerating experimentation, setting a new standard for scalable, composable, and flexible dis-
tributed training.

Finally, TOoRCHTITAN serves as an experimental testbed that enables users to curate, benchmark,
and compare multiple training recipes for the same model and hardware configuration. Its strength
lies in its ability to comprehensively capture the distributed training configuration space, allowing

principled evaluation across a broad spectrum of strategies to identify the most effective ones.

1.4 TorcuSIM: HigH FIDELITY RUNTIME AND MEMORY ESTIMATION FOR DISTRIBUTED

TRAINING

While TorcHTITAN allows users to curate and evaluate the training recipes by mixing and match-
ing different configurations, users still need to find the best training configuration for launching

their training run.
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1.4.1 Tue HoLy GrRAIL FOR Al TRAINING AT SCALE: ACCURATE RUNTIME AND MEM-

ORY ESTIMATION.

Accurate Cost Estimation as a Foundation for Training Recipe Search If it were possible for
machine learning practitioners to estimate the memory consumption and runtime of a training
configuration before execution, it would fundamentally change how large-scale model training is
conducted. First, accurate memory estimation would allow immediate detection of configurations
likely to fail due to out-of-memory errors, preventing wasted time and resources. Second, accurate
runtime prediction would enable practitioners to select the fastest configuration among those that
satisfy memory constraints. Together, these capabilities would eliminate the need for trial-and-error
experimentation, allowing researchers and engineers to assess feasibility and performance upfront,
before committing expensive compute resources, time, and cloud budget.

The complexity of end-to-end training cost estimation at scale. Despite its transformative
potential, accurate cost estimation is extremely challenging due to the intricate nature of distributed
training systems. First, training performance depends heavily on the selected parallelism strategy,
such as data, tensor, pipeline, or hybrid parallelism, each introducing different communication pat-
terns and synchronization overheads that influence runtime in non-trivial ways. Second, hardware
heterogeneity further complicates prediction. GPU architecture, memory bandwidth, interconnect
topology, and hardware-specific scheduling behaviors all impact both computational throughput
and communication efficiency.

Third, memory usage is governed by tensor liveness, which varies significantly across different
operator sequences and training strategies. Constructing a general analytical model that accounts
for memory lifetimes across arbitrary training configurations is infeasible. Finally, modern train-
ing frameworks introduce dynamic runtime optimizations such as overlapping communication

and computation through asynchronous execution streams. These behaviors evolve rapidly with
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framework updates, making theoretical performance modeling brittle and unreliable at scale. As a
result, practical and accurate cost estimation requires a simulation-based approach that can emulate

real-world execution while accounting for the full complexity of the training stack.

1.4.2 LIMITATIONS OF EXISTING RUNTIME AND MEMORY ESTIMATION APPROACHES

Existing runtime estimation techniques are largely limited to simplified single-GPU or kernel-level
settings Geoffrey et al. (2021); Lee et al. (2025a); Zhang et al. (2022b); Li et al. (2022), and fail to
capture the complexity of distributed training. Communication models often neglect critical system
factors, including multi-tier network topologies, collective communication algorithms, and the
impact of straggler delays Lee et al. (2025b); Won et al. (2023); Mohammad et al. (2017). Moreover,
accurate end-to-end performance prediction requires modeling the computation—communication
overlap introduced by advanced distributed training strategies such as Fully Sharded Data Parallel
(FSDP), Tensor Parallelism (TP), Pipeline Parallel (PP), and Context Parallelism (CP). To the best
of our knowledge, no existing work faithfully simulates these algorithms, leaving accurate runtime
estimation an unsolved problem.

Similarly, memory estimation tools are primarily profiling-based and operate post hoc Shi & De-
Vito (2023); pyt (2025a), offering no predictive insights into the memory impact of training config-
urations or the ability to prevent Out-of-Memory (OOM) errors proactively. Analytical techniques
for estimating peak memory usage Gao et al. (2020); Narayanan et al. (2021) are difficult to main-
tain and often inaccurate due to the opaque and evolving internals of modern training frameworks.
Other single-GPU tools Yu et al. (2020); Su et al. (2024) require actual execution and do not gen-
eralize to distributed contexts; they also lack detailed memory attribution and breakdown. To the
best of our knowledge, no existing method provides accurate, predictive memory estimation for

full-scale distributed training.
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1.4.3 SoruTioN: UNIFIED MODELING OF LARGE-SCALE Al TRAINING HARDWARE-CONSCIOUS
LEARNED AND ANALYTICAL ESTIMATION AND DISTRIBUTED GPU EXECUTION SIM-

ULATION

We introduce TORCHSIM, a predictive tool for estimating runtime and memory consumption in
distributed deep learning training workloads without requiring GPU execution.

ToRrcHSIM combines hardware-aware compute models with communication models that are
sensitive to topology, algorithmic structure, and collective communication patterns to accurately
predict operator-level execution times. It employs a detailed simulator that closely replicates the
multi-stream GPU execution model, capturing compute—communication overlap, exposed commu-
nication phases, and synchronization overheads to support accurate end-to-end runtime estimation.

For memory prediction, TORCHSIM tracks tensor memory usage at operator-level granularity
without allocating memory, and emulates memory consumed by distributed collective operations.
By mimicking PyTorch’s memory management and execution semantics, TORCHSIM can simulate
realistic training behavior, including effects from sharding, activation recomputation, and commu-
nication buffering.

This capability allows users to evaluate training configurations and cluster topologies before
execution, enabling principled design decisions and eliminating the need for costly empirical bench-
marking. TORCHSIM serves as the foundation for system-level optimization in LEGoAl, making

accurate performance prediction a first-class component of the distributed training pipeline.

1.5 Auto-SAC: ENHANCING THE COMPUTE-MEMORY EFFICIENCY TRADE-OFF IN Dis-

TRIBUTED TRAINING

To demonstrate the extensibility of LEGoAl and its ability to drive principled system innovation,

we develop AuTo-SAC, a principled and scalable algorithm for generating selective activation
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checkpointing (SAC) policies. SAC is a widely adopted technique for reducing peak memory usage
by selectively recomputing intermediate activations during the backward pass. While existing ap-
proaches are either manually configured or use limited automation, they often fail to support fine-
grained control or adapt to realistic hardware constraints. AUTO-SAC addresses these challenges by
leveraging TORCHSIM ’s operator-level runtime and memory estimates, not only for simulation, but
to empirically construct memory—compute trade-off curves and guide memory-aware optimization.

AuTo-SAC operates in two stages. At the global level, we formulate a memory-constrained In-
teger Linear Program (ILP) that determines which modules should apply SAC and how much
activation memory to discard. This optimization is driven by piecewise-linear approximations of
memory-recomputation trade-oft curves, generated from ToRCHSIM ’s operator-level performance
predictions. At the local level, we generate fine-grained SAC policies for each selected module using
one of three algorithms: a greedy heuristic, a knapsack-based dynamic programming solver, or a lo-
cal ILP for exact operator-level optimization. These local solvers balance recomputation cost with
memory savings, enabling precise activation discard decisions under module-level constraints.

The key insight behind AuTo-SAC is to decompose the SAC policy generation problem into
a two-level hierarchy. The global module-level ILP enables tractable coordination under memory
budgets across the model, while the local per-module optimization enables fine-grained control over
which activations to retain or recompute. This hierarchical approach ensures that SAC policies are
both globally coordinated and locally optimized.

We integrate AUTO-SAC into ToRCHTITAN to highlight the extensibility of our system and
enable rigorous, apples-to-apples comparisons with existing SAC strategies. This integration rein-
forces TORCHTITAN ’s role not only as a production-grade distributed training framework, but
also as a full-stack research platform for prototyping and benchmarking memory-compute trade-
offs. AuTo-SAC composes with all parallelism strategies handled by TorcHTITAN, including Fully

Sharded Data Parallel (FSDP), Tensor Parallelism (TP), and Context Parallelism (CP). Its heuristic
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solvers match the quality of ILP-based solutions while running several orders of magnitude faster,

making AuTO-SAC practical for real-world, large-scale training deployments.

1.6 THEsIS CONTRIBUTIONS

This thesis introduces LEGOALI a system that automatically and efficiently identifies the empiri-
cally optimal distributed training configuration for a given model, dataset, and hardware platform,
and generates a corresponding production-ready implementation. It comprises two core subsys-
tems: TORCHTITAN, a unified and scalable distributed training framework, and TorRCHSIM, a
high-fidelity simulator for runtime and memory estimation. To demonstrate the extensibility and
optimization capabilities of LEGOAI, we develop AuT0-SAC, a proof-of-concept system for gener-
ating memory-aware selective activation checkpointing policies.

The key contributions of this thesis are organized as follows.

1.61 DEVELOPMENT AND DEPLOYMENT OF A PRODUCTION-GRADE, UNIFIED, MODU-

LAR, COMPOSABLE, AND SCALABLE DISTRIBUTED TRAINING FRAMEWORK

To enable automated generation and deployment of training recipes, we develop TORCHTITAN,
a production-grade framework for composable four-dimensional parallelism and scalable training.

Our contributions include:

1. We advance DTensor by extending its sharding to support n-dimensional parallelism, enabling
compatibility with torch.compile for compiler-level optimization, and supporting efficient check-
pointing via state dict serialization. We also resolve critical bugs to improve its production readiness.

2. We demonstrate how to compose diverse parallelism strategies, data, tensor, pipeline, and
context parallelism, under a unified abstraction, enabling multi-dimensional configuration space

exploration for large language model training (§3.2).
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3. We enable hardware-software co-optimization by exploiting advanced GPU features, support-
ing customizable activation checkpointing strategies, and integrating torch. compile for compiler-
assisted memory and communication efficiency (§3.3).

4. We build production-ready support into TORCHTTTAN via scalable distributed checkpoint-
ing for fault recovery, integration of debugging tools (e.g., Flight Recorder), and detailed logging for
metrics and tracing (§3.4).

S. We evaluate TORCHTITAN on the LLaMA 3.1 family across 1D to 4D parallelism at scales
from 8 to 512 GPUs. We demonstrate training accelerations of 65.08% (LLaMA 3.1 8B, 128 GPUs),
12.59% (LLaMA 3.1 70B, 256 GPUs), and 30% (LLaMA 3.1 405B, 512 GPUs), and highlight the
role of 4D parallelism in enabling long-context training on H100 GPUs (§3.5.2).

6. We provide systematic training recipes and practical guidelines to help users navigate configu-

ration decisions across model sizes and cluster topologies (§3.6).

These contributions of TORCHTITAN position LEGOAI as a platform that unifies implementa-

tion, deployment, and exploration of the distributed training configuration space.

1.6.2 BUILDING A HiGH FIDELITY RUNTIME AND MEMORY ESTIMATION SIMULATOR FOR

DiSTRIBUTED TRAINING

To support configuration selection without costly trial-and-error, we develop TorRCHSIM, a simula-
tor that predicts runtime and memory usage without requiring actual GPU execution. Key contri-
butions include:

1. We design ToRCHSIM as a model-agnostic, non-intrusive simulation framework that inte-
grates with PyTorch training pipelines. It allows pluggable compute and communication models
and supports diverse hardware and distributed configurations (§ 4.1 and § 4.2.1).

2. We build accurate compute and communication estimators using learned models and sta-
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tistical methods. TorcHSIM models operator-level execution, synchronization, and compute—
communication overlap to simulate advanced workflows such as FSDP, TP, and CP (§ 4.5, § 4.4,
and § 4.6).

3. We implement an operator-level memory estimator that tracks tensor allocations and dealloca-
tions, categorizes memory usage (parameters, gradients, activations, optimizer states), and provides
per-device memory statistics for optimization and debugging (§ 4.3).

4. We open-source TORCHSIM as part of TorchTitan Liang et al. (2024), and release accompa-
nying data: benchmarking scripts, compute models (A100/H100), and collective communication
datasets (InfiniBand and RoCE).

5. We evaluate TORCHSIM across diverse models (Gemma-2B, CLIP, TS, ViT, LLaMA vari-
ants), GPUs (A100 and H100), cluster sizes (64—512 GPUs), and parallelism techniques. TorcH-
S1Mm achieves 99.9% accuracy in memory estimation and =90% accuracy in runtime estimation
(§ 4.7).

These capabilities establish TorcHSIM as LEGOAI’s foundation for predictive configuration

selection, enabling automated exploration of distributed training strategies with high fidelity.

1.6.3 ADVANCING THE STATE-OF-THE-ART TO DELIVER SUPERIOR COMPUTE-MEMORY

TRADE-OFF IN DISTRIBUTED TRAINING

To demonstrate the extensibility of LEGoAI and the utility of TorcHSIM in policy synthesis, we
develop AuTO-SAC, a system for automatically generating optimal selective activation checkpoint-
ing (SAC) policies. Key contributions include:

1. We build a simulation-based estimator using TORCHSIM that captures operator-level run-

time and memory statistics, enabling empirical construction of memory—compute trade-off curves

(§5.3).
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2. We formulate a global mixed-integer linear program (MILP) that selects modules for check-
pointing and assigns discard budgets to minimize recomputation while satisfying a user-defined
memory budget (§ 5.4).

3. For each checkpointed module, we generate fine-grained SAC policies using one of three
solvers: a greedy heuristic (MSPS), a knapsack-based dynamic programming solver, or a local ILP for
exact optimization (§ 5.5.1,§ 5.5.2,and § 5.5.3).

4. We integrate AuTO-SAC into TORCHTITAN, enabling support for FSDP, TP, CP, and
torch.compile models. This facilitates end-to-end deployment and benchmarking of memory-
aware training policies.

5. We evaluate AuTo-SAC on LLMs and multimodal models including LLaMA and Stable
Diftusion. AuTo-SAC reduces recomputation overhead by up to 90% over naive checkpointing and

matches ILP-level performance with heuristics that are orders of magnitude faster (§ 5.6).

These results position AuT0-SAC as both a demonstration of LEGOAI ’s extensibility and a

state-of-the-art method for memory-constrained training optimization.

1.6.4 SUMMARY

Through its core subsystems, TORCHTITAN for scalable synthesis and execution, and TorcH-
Sim for predictive simulation, LEGOAI enables the efficient identification and deployment of high-
performance training configurations across diverse models, hardware platforms, and parallelism
strategies. By integrating AuUTO-SAC as a proof of concept, LEGOAI further demonstrates its ex-
tensibility in driving advanced memory-aware optimizations. Together, these components establish
LEGoAI as a comprehensive solution for automating the design and scaling of large-scale Al train-

ing workloads.
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1.7 TuHEsis ORGANIZATION

This thesis is organized into five chapters. Chapter 2 introduces foundational concepts in dis-
tributed training, covering multi-dimensional parallelism, GPU execution semantics, and activa-
tion checkpointing. Chapter 3 presents TORCHTITAN, a unified and modular training framework
that composes 4D parallelism, integrates compiler and hardware-aware optimizations, and supports
scalable, production-grade deployment. Chapter 4 introduces TORCHSIM, a high-fidelity simulator
that predicts runtime and memory usage by modeling operator-level execution, communication,
and tensor liveness without requiring GPU execution. Chapter 5 demonstrates the extensibility of
LeGoAI through AuTo-SAC, a system that uses TORCHSIM ’s predictions to generate optimized
activation checkpointing policies under memory constraints, enabling precise and efficient training
at scale. Finally, Chapter 6 summarizes the thesis contributions and outlines future research direc-

tions in automated distributed training, simulation-based optimization, and large-scale Al systems.
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This chapter presents the foundational concepts necessary for understanding distributed training
algorithms. We begin with single-GPU training and incrementally build toward multi-dimensional
parallelism, examining how various parallelization strategies are composed and analyzing their trade-
offs in runtime, memory usage, and communication overhead in large-scale model training. In ad-
dition, we uncover the execution semantics of modern deep learning frameworks and provide a
detailed understanding of the intricate multi-stream GPU execution model used to maximize hard-
ware utilization and performance. Finally, we explain activation checkpointing, a widely used algo-

rithm for navigating compute memory trade-offs.

2.1 SiNGLE-GPU MoDEL TRAINING

At ts core, a deep learning model is a composition of differentiable functions, called operators, de-
signed to model data distributions for prediction or generation tasks. A single training iteration, also
called as a train step, consists of three phases: a forward pass that generates the outputs for all opera-
tors, a backward pass that generates the gradients, and a optimizer step that modifies the parameters
based on the gradients.

We depict a complete single-GPU training iteration for a Multilayer Perceptron (MLP) model in
Figure 2.1.

During the forward pass, the input data propagates through the model to generate predictions.
Given an input x, it is first multiplied by the parameters of the first layer (p1), passed through the
GeLU function, and then multiplied by the second layer’s parameters (p,) to produce the output 2.
The loss is computed by comparing the predicted output with the target.

In the backward pass, gradients of the loss with respect to model parameters are computed using
backpropagation. Starting from the derivative of the loss, %, the chain rule is applied to compute

gradients for each layer’s parameters (g1 for p; and g, for p,). Throughout this process, parameters
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Figure 2.1: Parameters, gradients, optimizer states and activations retained in memory during single GPU training.
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and intermediate activations must be retained for gradient computation. However, while parameter

gradients are necessary for updates, temporary gradients with respect to activations can be freed

immediately after use to optimize memory consumption.

An optimizer step typically follows the backward pass (optional in the case of gradient accu-

mulation), updating parameters using gradients and a specified learning_rate while maintaining

per-parameter optimizer states (e.g., momentum). Gradients are usually freed after the optimizer

step.

2.2 COMMUNICATION COLLECTIVES

All-Gather All-Reduce
Rank0 | Rankl | Rank2 | Rank3 Rank0 | Rankl | Ramk2 | Rank3
A W, ‘ Gio | Gao Gy1| G Gy2| Gy, Gys | Gas
W, W, G3o | Gao Gy | Gy Gy, | Gap Gy | Gas
W - ‘ G = zéj:‘,G,J '
Rank0 | Ramkl | Rank2 Rank3 Rank0 | Rankl | Rank2 | Rank3
Wy | W [f W | WG || WG | WG [ W, (W, G, GZ§G1 G, || Gi | G, || Gy | G,
w, [ W (| w [ [ w, [We || w, [we clclichchicycl cle.

(a) All-Gather. Each GPU starts with
a shard of data (e.g., J¥;) and ends
with the full concatenated data
across all ranks.

(b) All-Reduce. Each GPU con-
tributes partial values (e.g., G,-]-) to
a global reduction. All ranks receive
the full reduced result.

Reduce-Scatter

Rank 0 } Rank 1 } Rank 2 ' Rank 3

Guo | Gao [[ Gua | Gaa [| Gz | Gaz [{ Gra | Gas

Ggo | Gao Gy | Gy Gy | Gay Gy | Gas

Rank 0 Rank 1 ‘ Rank 2 Rank 3
G, G,
16 J| |G

(c) Reduce-Scatter. Each GPU sends
data to a global reduction and re-
ceives a distinct shard of the reduced
output.

Figure 2.2: Visual illustration of core collective communication primitives used in distributed training Kempner Institute
(2025). These operations are fundamental to model parallelism and efficient synchronization across GPUs.

Efficient distributed training relies on a set of fundamental communication collectives to syn-

chronize data, parameters, and gradients across GPUs. The most commonly used primitives are

All-Gather, All-Reduce, and Reduce-Scatter as illustrated in Figure 2.2". Each serves a distinct

role in managing the movement and aggregation of data in parallel training workflows:

*Figures sourced from Harvard Kempner Institute’s Computing Handbook (Kempner Institute (2025))

24



¢ All-Gather: In an all-gather operation, each GPU begins with a disjoint partition of a tensor
and ends up with the concatenated result of all partitions. For example, if each GPU holds
a weight shard 177, the all-gather operation ensures that every GPU receives the full tensor
(W1, Wo, W5, W,]. This is typically used to reconstruct sharded activations or parameters

before computation.

¢ All-Reduce: In an all-reduce operation, each GPU contributes its local data (e.g., partial
gradients) to a reduction (such as summation), and all GPUs receive the full reduced result.
Mathematically, for a local shard G;; on GPU, theresult G; = ) y Gy is computed and
broadcasted to all GPUs. This is commonly used to synchronize parameter gradients in data-

parallel training.

* Reduce-Scatter: In a reduce-scatter operation, all GPUs contribute data to a global reduc-
tion, but each GPU receives only a portion of the reduced result. Continuing the gradient
example, after computing G; = > i G;j, each GPU receives only one shard G;. This is espe-

cially useful when full replication is unnecessary, such as in sharded gradient aggregation.

These collectives are essential to building scalable and memory-efficient distributed training sys-
tems. They underpin the parallel semantics in data parallelism, tensor parallelism, and pipeline par-
allelism by enabling consistent synchronization of parameters, gradients, and intermediate activa-

tions.

2.3 DisTRIBUTED MODEL TRAINING

As models and datasets scale, distributed training techniques such as Distributed/Fully Sharded
Data Parallel (DDP/FSDP) (Li et al., 2020; Rajbhandari et al., 2020; Zhao et al., 2023), Tensor Par-

allel (TP) (Shoeybi et al., 2019; Narayanan et al., 2021; Wang et al., 2022; Py Torch Team, 2024b),
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Figure 2.3: FSDP shards the parameters, gradients and optimizer states across multiple GPUs. It reconstructs the
parameters dynamically and averages and redistributes the gradients dynamically using the all_gather and reduce_scatter
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collective operations respectively.

Context Parallel (CP) (Liu et al., 2023; NVIDIA, 2023; Py Torch Team, 2025), and Pipeline Parallel
(PP) (Huang et al., 2019a; Narayanan et al., 2019, 2021; Lamy-Poirier, 2023; Qi et al., 2024; Tang

et al., 2024a; PyTorch Team, 2024d; DeepSeek-Al, 2025) are employed to efficiently distribute
workloads across multiple GPUs. These methods partition the model’s data, parameters, gradients,
optimizer states, and activations, reducing the memory required on any single GPU and parallelizing

computation.

2.3.1 FurLLY SHARDED DATA PARALLEL (FSDP)

We modify the MLP example in Figure 2.1 to illustrate FSDP in Figure 2.3.

26



1 has shape [F, H], p> has shape [H, F], and the input x has shape [B, F], with F as the feature
dimension, / as the hidden dimension, and B as the batch size. Using FSDP as a case study, parame-
ters p1 and p; are partitioned along the feature dimension and distributed across N GPUs, while the
input x is split along the batch dimension B, as illustrated in Figure 2.3. This reduces the memory
footprint for parameters, gradients, and optimizer states on each GPU by a factor of N.

During the forward pass, full parameters are temporarily reconstructed (unsharded) using an
all_gather operation before computation. Once complete, they are redistributed (resharded) to
minimize memory usage. The backward pass follows a similar process, where unsharded gradients
are computed and then averaged and sharded across GPUs using a reduce_scatter operation. This
approach ensures that full parameters and gradients only occupy memory when necessary, signifi-

cantly optimizing memory usage during training.

2.3.2 TENSOR PARALLEL (TP) For MLP

For Tensor Parallel (TP), the sharding is done as follows: The parameters p; and p, are statically par-
titioned across M GPUs along the hidden dimension: p is split column-wise and p; is split row-wise
as shown in Figure 2.4. This also reduces memory usage for parameters, gradients, and optimizer
states by a factor of M. Unlike FSDP, the input x is sharded along the feature dimension F. Before
each forward pass, the input is reconstructed using the a/l_gather operation, and after the first linear
and activation (GeLU) operations, the intermediate activations remain sharded along A. The sec-
ond linear operation is applied on these sharded activations, producing a partial result, which is then
aggregated and sharded back using a reduce_scatter operation along the feature dimension across

M devices. During the backward pass, a similar process occurs. This allows TP to save memory not

only for the parameters and gradients, but also for the activations throughout the computation.
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Figure 2.4: Tensor Parallelism (TP) partitions the model parameters across GPUs along the hidden dimension: p;

is split column-wise and p, row-wise. The input x is sharded along the feature dimension and reconstructed using
all_gather before the forward pass. Intermediate activations remain sharded, and the final output is redistributed using
reduce_scatter. TP reduces memory usage for parameters, gradients, and activations, while avoiding full all_reduce

overheads.
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2.3.3 TENSOR PARALLEL (TP) FOR MULTI-HEAD ATTENTION

In Tensor Parallelism (TP), the parallelization is applied across the multiple heads of a self-attention
mechanism. Consider a single multi-head attention layer where the input tensor x has shape [B, S, D],
with B as the batch size, S as the sequence length, and D as the hidden dimension. Suppose the
model uses H attention heads, each with dimensionality Dy = D/H. TP distributes the com-
putation of these / heads across /4 GPUs.

Each attention head uses three learned projection matrices W, Wi, W of shape [D, Dy,
and an output projection W of shape [D, D]. In TP, the A heads are divided evenly across de-
vices, so each GPU computes /M heads. Correspondingly, the projection weights are sharded:
W o, Wk, Wy are partitioned along the output dimension with shape [D, D/M], and W is
sharded as [D/M, D).

The inputx € [B, S, D] is replicated across all M1 devices. Each device computes its local projec-

tions:

Q=x WY, K=x W Vi=x W) whereQ, K, V;€BSD/M
Each device then computes scaled dot-product attention over its assigned heads:

QZ'Kz‘T
vVDg

These partial outputs are aggregated using all-reduce across GPUs to produce the complete

Attn,; = Softmax ( ) V; € [B,S,D/M)|

attention output 4 € [B, S, D], which is then passed through the sharded output projection. Each
device computes a slice of 4 - VV(Z'), and the final result is assembled via reduce-scatter.

In the backward pass, gradients are computed locally per head and aggregated using collective
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operations. This approach reduces memory usage for projections and intermediate tensors by a

factor of M, while enabling parallel computation across attention heads.

2.3.4 CONTEXT PARALLEL (CP) FOR MULTI-HEAD ATTENTION

In Context Parallelism (CP), the parallelism is applied across the sequence dimension. Given in-
putx € [B,S, D], CP partitions the sequence length S across N GPUs. Each device receives x; €
[B,S/N, D], corresponding to a different slice of the input sequence. This strategy is especially ben-
eficial for long-context models.

Each device computes local projections:

Qi =X WQ7 1{1 =X WK7 VZ =X WV where Ql'71<1'7 Vvl € [BaS/NvD]

To compute global attention, an all-gather is used to collect the full K'and V across devices,

forming K € [B, S, D] and V' € [B, S, D]. Each device computes attention for its local Q;:

QK"
VDy

The local attention output is passed through the shared output projection Wy € [D, D]. Op-

Attn; = Softmax < ) Ve [B,S/N, D]

tionally, a reduce-scatter operation is used to partition the final output among devices if required
by the downstream layers.
During backpropagation, gradients with respect to K and V" are distributed back via reduce-scatter,
and gradients with respect to Q are used locally. Projection gradients are aggregated with all-reduce.
CP reduces per-device memory usage for attention maps and allows distributed training over

long sequences. It is particularly well-suited for autoregressive and retrieval-based models where
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Figure 2.5: Pipeline Parallelism (PP) partitions the model into sequential stages, each assigned to a different GPU or
GPU group. Intermediate activations and gradients are transferred between stages using send/recv collectives. Each

stage executes forward and backward computations independently, enabling concurrent microbatch execution and
efficient scaling across deep models.

context length dominates computational cost.

2.3.5 PiPELINE PARALLEL (PP)

In Pipeline Parallelism (PP), the MLP model is divided across two pipeline stages as shown in Fig-
ure 2.5. Stage 0 holds the first linear layer p; € [F, H], and Stage 1 holds the second linear layer
p2 € [H, F]. Theinput tensorx € [B, ] is fed into Stage 0, where it is multiplied with py, passed
through a GeLU activation, and produces an intermediate activation y € [B, H]. This activation
is transmitted to Stage 1 using send/recv collectives. In Stage 1, the second linear transformation

z =7y py € [B, F|is computed. During the backward pass, the gradient of the loss with respect to
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Figure 2.6: 2D Parallelism combines Fully Sharded Data Parallelism (FSDP) and Tensor Parallelism (TP) to reduce memory
and distribute computation. Parameters and optimizer states are sharded across FSDP groups, while TP partitions the
model layers along the hidden dimension. Inputs are sharded across the feature dimension and reconstructed using
all_gather, while outputs are redistributed using reduce_scatter. Gradients are locally reduced via FSDP and TP collec-

tives.

2z, %, is used to compute local gradients for p,, and the gradient with respect to y, %, is sent back
to Stage 0. There, it is used to compute gradients for p;. This setup allows forward and backward
passes to proceed in a pipelined fashion, improving throughput and reducing per-device memory

usage.
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2.3.6 MULTI-DIMENSIONAL PARALLELISM

2D Parallelism applies both Fully Sharded Data Parallelism (FSDP) and Tensor Parallelism (TP) to
the MLP example as depicted in Figure 2.6. Let p; € [F, H| and p, € [H, F] be the parameters for
the two linear layers. FSDP shards parameters, gradients, and optimizer states across N GPUs along
the batch dimension, such that each GPU holds a slice of [F/N, H] or [H, F/N]. Within each FSDP
group, TP further shards each tensor across /4 GPUs along the hidden dimension. Specifically, p; is
split column-wise into [F, H/M], and p, is split row-wise into [H/M, F]. The inputx € [B/N, F| is
sharded along the feature dimension across the TP group and reconstructed via all_gather before
the forward pass. The first linear transformation and GeLU activation produce activations v €
[B/N, H/M], which are then passed through the second linear layer to compute z € [B/N, F]. The
result is redistributed using reduce_scatter. This combination reduces memory usage across both
model weights and activations while maintaining efficient compute execution.

In the 3D Parallelism setup, the MLP model is distributed across pipeline stages, tensor parallel
groups, and FSDP groups as shown in Figure 2.7. Stage 0 holds the first linear layer p; € [F, H]
and Stage 1 holds the second layer p, € [H, F]. Parameters are first sharded using FSDP across N
GPUs along the batch dimension. Within each FSDP group, TP is used to split the tensors across
M GPUs along the hidden dimension: p; becomes [F, H/M)] and p, becomes [H /M, F]. The in-
putx € [B/N,F/M)]is reconstructed using all_gather, then multiplied with p; and passed
through a GeLU activation to produce y € [B/N, H/M]. This activation is passed to Stage 1 us-
ing send/recv. In Stage 1, the outputz = y - po € [B/N, F/M] is computed and redistributed
using reduce_scatter. During backpropagation, gradients are computed locally and synchronized
via FSDP and TP collectives, while pipeline stages exchange gradients via send/recv. This configu-

ration enables scalable, memory-efficient training across thousands of GPUs.
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(FSDP) to enable scalable and memory-efficient training across thousands of GPUs. Each pipeline stage applies TP

to shard computation along the hidden dimension, and FSDP to shard parameters within TP subgroups. send/recv
operations are used for inter-stage communication, while all_gather and reduce_scatter are used to manage intra-stage
computation and memory efficiency.
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Figure 2.8: The operators (blue) and communication collectives (orange) dispatched by the CPU across multiple GPU
streams for the example in 2.3. Although the CPU issues operations sequentially, streams can overlap in execution,
e.g., as shown by Cz'n_pZ and AG_pZ in the forward pass, until forced to synchronize, e.g. by all_gatber (AG) and
reduce_scatter (RS), as denoted by the red and green vertical lines.

2.4 DisTRIBUTED TRAINING EXECUTION SEMANTICS

To understand the actual memory usage and execution time, it is crucial to closely inspect the exe-
cution and memory behavior of the underlying training system. Figure 2.8 illustrates the execution
flow of a model training iteration in PyTorch Paszke et al. (2019) using a GPU GPU.

Framework Fundamentals. Frameworks such as PyTorch provide modules, which serve as con-
tainers for commonly used deep learning components such as linear, attention, convolution layers,
etc. Tensors are the fundamental containers for data such as parameters, gradients, or activations.

Each module consists of a well-defined set of operators provided by PyTorch, such as matrix mul-
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tiplication, dot product attention, etc., that operate on the tensors. Executing an operator involves
launching one or more GPU kernel functions, which are highly optimized parallel implementations
of the operator. Thus, performing a forward and backward pass on a module translates to executing
a sequence of tensor operations on the GPU.

Goal. Efficient distributed training depends on minimizing memory usage and overlapping com-
munication with computation. This is accomplished by retaining only essential data in memory and
performing communication asynchronously with independent compute operations. The stream
execution model, central to all modern GPUs, enables this high-performance parallel execution.

Execution. A GPU consists of multiple resources, including compute cores, communication
engines, and DMA engines. Each stream represents a queue of operations that execute sequentially
within the stream but may run concurrently with operations from other streams if they utilize in-
dependent resources or do not fully occupy a shared resource. While developers can create multiple
streams, operations across different streams may execute in parallel or out of order.

Synchronization. To coordinate execution across streams, synchronization primitives such as
stream/event waits and barriers are used. If an operation in a high-priority stream depends on data
from another stream, explicit synchronization (e.g., via events) is required to enforce the correct
execution order. This ensures that while streams enable parallel execution, actual overlap occurs
only when operations are assigned to different hardware resources.

Memory. Memory allocation in GPUs follows stream semantics, meaning memory allocated
within a stream is returned to the same stream after use. In PyTorch, memory ownership remains
unchanged throughout execution unless explicitly cleared or managed by a custom memory alloca-
tor. The CPU sequentially dispatches operators for execution on the GPU, assigning them to dif-
ferent streams as determined by the scheduling algorithm. Memory allocation and deallocation are
handled by the memory manager on the CPU side. Since each stream owns the memory allocated

within it, the CPU can logically free memory assigned to an operator before execution using refer-
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ence counting. Because operations within a stream execute sequentially, reassigning freed memory
to a subsequent operation after its last use ensures correctness.

Example. Figure 2.8 illustrates the CPU dispatch order and the corresponding multi-stream
GPU execution for PyTorch’s per-parameter FSDP algorithm, applied to the previous MLP exam-
ple. The communication collectives (a/l_gather and reduce_scatter) are strategically enqueued in
separate streams to maximize overlap with independent compute operations whenever possible.

Collective communication operations require copy-in and copy-out operations for efficiency.
Copy-in operations must complete before launching a/l_gather, making them a blocking step. To
minimize delays, these operations are enqueued in a high-priority stream. Once a//_gather finishes,
copy-out operations can begin, ensuring that data is available for subsequent computation. Simi-
larly, reduce_scatter operations can only start once gradient copy-in operations complete. To enforce
these dependencies, synchronization events are inserted to maintain correct execution order across
streams.

Memory management in this workflow is tightly coupled with the CPU dispatch order. When
memory is allocated for an operation, such as the a//_gather for p; during the forward pass, it is logi-
cally released as soon as the CPU processes the corresponding copy-out operation, even if the actual
operation s still running. This approach allows the memory to be safely reused by the subsequent
all_gather for p,, as it is issued on the same stream and is guaranteed to execute only after the copy-

out operation for p; has completed.

2.5 DISTRIBUTED MODEL TRAINING PARADIGMS

Distributed training strategies such as Fully Sharded Data Parallel (FSDP), Tensor Parallelism (TP),
and Context Parallelism (CP) follow the Single Program, Multiple Data (SPMD) paradigm. In this

model, each device runs the same program but operates on a different portion of the data or model.
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For example, in FSDP, devices process different microbatches; in CP, they handle different segments
of the sequence; and in TP, they work on separate but identically shaped model weight shards (e.g.,
attention heads or matrix blocks). Because all devices execute the same code in parallel, it is sufficient
to estimate memory and runtime for a single SPMD process to predict system-wide behavior.

In contrast, Pipeline Parallelism (PP) follows the Multiple Program, Multiple Data (MPMD)
paradigm. The model is partitioned into sequential stages, with each stage mapped to a different de-
vice or group of devices, each processing a distinct subset of the model and data. When combining
parallelism strategies, pipeline parallelism is typically applied first, and each pipeline stage executes
its own internal SPMD workflow using FSDP, TP, or CP across the assigned devices. Because each
pipeline stage follows the SPMD model internally, it is sufficient to estimate memory and runtime
for one SPMD process per stage to predict system-wide memory usage. However, for accurate run-
time estimation, interactions between SPMD processes across pipeline stages, such as communica-

tion delays and scheduling dependencies, must be carefully modeled.

2.6 ActivaTION CHECKPOINTING

To reduce memory usage during training, activation checkpointing (AC) selectively discards inter-
mediate activations in the forward pass and recomputes them during backpropagation (Chen et al.,
2016; Korthikanti et al., 2023; He & Yu, 2023; Purandare et al., 2023). This technique trades ad-
ditional compute for reduced memory, enabling larger batch sizes and deeper models under fixed

memory budgets.

2.6.1 ExAMPLE: TRANSFORMER LAYER

Consider a simplified Transformer block, composed of a self-attention sub-layer and a feed-forward

network (FFN), interleaved with layer norms and residual connections. Let x € RE*$*D be the
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input tensor.

y1 = LayerNorm(x)

Yy = SelfAttention()’l)
y3 =x+y, (residual)
y4 = LayerNorm(y3)
s = FFN(y4)

2 =1y3+ys (residual)

In standard training, all intermediate activations y; through ys are stored, which incurs high

memory overhead.

2.6.2 FuLL AcTIVATION CHECKPOINTING

In full AC, the entire module is treated as a single checkpoint. Only the input x is retained; all inter-
mediate activations are discarded and recomputed in the backward pass. This significantly reduces
memory, but the full forward computation is repeated—often introducing high recomputation

cost.

2.6.3 SELECTIVE ACTIVATION CHECKPOINTING (SAC)

SAC generalizes AC by allowing more granular control over which activations are discarded. Rather
than checkpointing entire modules, SAC operates at the operator level. For the Transformer exam-

ple above, a SAC policy might:

* Discard y; and y4 (LayerNorm outputs), which are cheap to recompute,
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* Store y, (output of attention), which is expensive,
* Retain y3 (residual), as it is reused.

This fine-grained control provides a better memory—compute trade-off than full AC, but it re-
quires knowing the runtime and memory profile of every operator—an infeasible task for users to

manage manually at scale.
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3

TorchTitan: A Unified, Modular,
Composable, and Scalable Distributed

Training Framework
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To automatically discover and deploy optimal training recipes, LEGOAI must not only identify
high-performance configurations but also synthesize scalable and efficient implementations for
them. This requires a unified framework that is flexible, composable, and production-ready. To
meet this need, we develop TORCHTITAN, an open-source, Py Torch-native training system de-
signed to execute arbitrary distributed configurations at scale.

TorcHTITAN supports seamless composition of four-dimensional parallelism, including Fully
Sharded Data Parallelism (FSDP), Tensor Parallelism (TP), Pipeline Parallelism (PP), and Con-
text Parallelism (CP), within a unified and modular framework. It enables elastic scaling, efficient
memory management, and integration of advanced hardware features such as Float8 training and
SymmetricMemory. Designed for both experimentation and deployment, TorRCHTITAN provides
detailed logging, robust checkpointing, and debugging capabilities that support reproducibility and
fault tolerance.

By scaling LLaMA 3.1 models to thousands of GPUs, achieving speedups of 65.08%, 12.59%,
and 30% at 128, 256, and 512 GPUs respectively, and enabling long-context training on NVIDIA
H100 clusters, TorcHTITAN demonstrates its effectiveness as both a systems research platform
and a foundation for production-grade training. Through TorcHTITAN, LEGOAI bridges the gap
between algorithmic discovery and practical implementation, turning synthesized training recipes

into high-performance, executable programs.

3.1 TORCHTITAN SIMPLE AND MODULAR END-TO-END TRAINING PIPELINE

TorcHTITAN incorporates various parallelisms in a modular manner to enable easy, user-selectable
combinations of multi-dimensional shardings. This composability enables the tackling of difficult
scaling challenges by enhancing the ease of exploration for optimizing training efficiencies at scale.

The codebase of TORCHTITAN is organized purposefully to enable composability and extensi-
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Figure 3.1: Composable and Modular TorchTitan initialization workflow.

bility. We intentionally keep three main components separate and as orthogonal as possible: (1) the
model definition, which is parallelism-agnostic and designed for readability, (2) parallelism helpers,
which apply parallelisms and training optimizations to a particular model, and (3) a generalized
training loop. All these components are configurable via TOML files with command-line overrides,

and it is easy to add new models and parallelism techniques on top of the existing codebase.

3.2 CoMPOSABLE N-D PARALLELISM TRAINING

In this section, we will walk through the entire regime of scaling model training on large clusters,
including meta device initialization and the core composable multi-dimensional parallelisms, to
showcase how these techniques can be composed to train LLMs efficiently at increasing scale in

TorcHTITAN. The corresponding code snippets in TORCHTITAN can be found in Section 3.8.1.

3.2.1 LARGE-SCALE MODEL INITIALIZATION USING META DEVICE

As LLMs grow exponentially, scaling challenges arise even before training begins, particularly in
instantiating large models for sharding without exceeding CPU or GPU memory limits.

To address this, ToRCHTITAN enables meta device initialization, where the model is first cre-
ated on a meta device that stores only metadata, making initialization ultra-fast. The model is then

sharded into Distributed Tensors (DTensors), with the local shard of each parameter residing on the
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meta device. Finally, parameter initialization is performed using user-defined functions, ensuring

correct DTensor sharding layouts and proper RNG seed usage.

3.2.2 Furry SHARDED DATA PARALLEL

The original Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023) is an effective implementation
of ZeRO that offers large model training capability in PyTorch. However, the original implementa-
tion (FSDP1) in PyTorch suffers from various limitations due to its FlatParameter implementation.

Given these limitations, TORCHTITAN integrates a new version of Fully Sharded Data Parallel
(FSDP2), which uses the per-parameter Distributed Tensor sharding representation and thus pro-
vides better composability with model parallelism techniques and other features that require the
manipulation of individual parameters.

TorcHTITAN integrates and leverages FSDP2 as it’s default 1D parallelism, benefiting from the
improved memory management (often 7 percent lower per GPU memory requirement vs FSDP1)
and the slight performance gains (average of 1.5 percent gain vs FSDP1). More details on FSDP2 and
usage example are shown in Section 3.8.2. ToRCHTITAN makes it simple to run with FSDP2 by
embedding appropriate defaults, including auto-sharding with your world size automatically.

For scaling to even larger world sizes, TORCHTITAN also integrates Hybrid Sharded Data Parallel
(HSDP) which extends FSDP2 by creating 2D DeviceMesh with replica groups. Details are shown

in Section 3.8.3

3.2.3 TENSOR PARALLEL

Tensor Paralle]l (TP) (Narayanan et al., 2021), together with Sequence Parallel (SP) (Korthikanti
etal., 2023), is a key model parallelism technique to enable large model training at scale.

TP is implemented in TORCHTITAN using the PyTorch’s RowwiseParallel and ColwiseParallel
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APIs, where the model parameters are partitioned to DTensors and perform sharded computation
with it (Figure 3.4). By leveraging DTensor, the TP implementation does not need to touch the
model code, which allows faster enablement on different models and provides better composability

with other features mentioned in this paper.

TENSOR AND SEQUENCE PARALLEL (TP/SP)  While TP partitions the most computationally
demanding aspects, Sequence Parallel (SP) performs a sharded computation for the normalization
or dropout layers on the sequence dimension, which otherwise generate large replicated activation
tensors, and thus can be challenging to memory constraints per GPU. See Section 3.8.4 for more
details, illustrations, and usage for both TP and FSDP + TP.

Due to the synergistic relationship between TP and SP, TorRcHTTTAN natively bundles these

two together, and they are jointly controlled by the TP degree setting.

Loss PARALLEL  When computing the loss function, model outputs are typically large, especially
with TP/SP, where they are sharded across the vocabulary dimension. Naively computing cross-
entropy loss requires gathering all shards, leading to high memory usage.

Loss Parallel enables efficient loss computation without fully gathering model outputs, signifi-
cantly reducing memory consumption and improving training speed by minimizing communica-
tion overhead and enabling parallel sharded computation. Due to these advantages, ToRCHTITAN

implements Loss Parallel by default.

3.2.4 PIiPELINE PARALLEL

For large-scale pretraining, TorRCHTTTAN employs Pipeline Parallelism (PP), which minimizes com-
munication overhead by leveraging P2P communications. PP divides the model into S stages, each

running on a separate group of devices. Typically, each stage represents a model layer or a group of
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adjacent layers, but can include partial layers. During the forward pass, each stage receives input ac-
tivations (except stage 0), computes locally, and sends output activations (except stage S — 1). The
last stage computes the loss and initiates the backward pass, sending gradients in reverse order. To
improve efficiency, the input batch is split into microbatches, and the pipeline schedule overlaps
computation and communication across microbatches. TORCHTITAN supports various pipeline
schedules (Narayanan et al., 2019; Huang et al., 2019b; Narayanan et al., 2021; Tang et al., 2024b).
Recently, TorcHT1TAN added support for new schedules including ZeroBubble and "Flexible-
Interleaved-1F1B’, making use of pipeline IR to quickly express new schedules as a list of compute
actions and rely on compiler passes to insert and optimize communication actions Py Torch Team
2024d.

The PP training loop difters from standard training by creating pipeline stages and executing
schedules instead of directly invoking model . forward(). Since loss is computed per microbatch,
TorcHTITAN introduces a shared loss_fn to unify pipeline and non-pipeline workflows, reducing
code divergence.

torch.distributed.pipelining also simplifies interactions with data parallelism, ensuring that
reductions occur only after the final microbatch and handling shard/unshard operations (e.g., with
ZeRO-3), as well as applying gradient scaling transparently within the pipeline schedule executor.

For more details on ToRcHTITAN’s implementation of PP, see Section 3.8.5.

3.2.5 CONTEXT PARALLELISM

ToRrcHTITAN has been extended to incorporate Context Parallelism (CP) (Liu et al., 2023; Liu
& Abbeel, 2024; NVIDIA, 2023), enabling 4D parallelism by adding CP as an additional dimen-
sion to existing DP, TP, and PP. CP scales model training by splitting the sequence dimension
across GPUs, significantly increasing the maximum trainable context length without causing out-

of-memory (OOM) errors. For example, on Llama 3.1 8B with 8 H100 GPUs, using CP enabled
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training at context lengths up to 262,144 tokens, achieving minor MFU degradation as CP degree

increases (PyTorch Team, 2025). For more details on CP integration please refer to Section 3.8.6.

3.3 OPTIMIZING TRAINING EFFICIENCIES

3.3.1 NAVIGATING COMPUTE-MEMORY TRADE-OFFS USING ACTIVATION CHECKPOINT-

ING

Activation checkpointing (AC) (Chen et al., 2016; He & Yu, 2023; Purandare et al., 2023) and
selective activation checkpointing (SAC) (Korthikanti et al., 2023) are standard training techniques
to reduce peak GPU memory usage, by trading activation recomputation during the backward pass
for memory savings. It is often needed even after applying multi-dimensional parallelisms.

TorcHTITAN offers flexible AC and SAC options utilizing torch.utils.checkpoint, applied
at the TransformerBlock level. The AC strategies include “full” AC, op-level SAC, and layer-level
SAC.

Within a TransformerBlock, full AC works by recomputing all activation tensors needed during
the backward pass, whereas op-level SAC saves the results from computation-intensive PyTorch
operations and only recomputes others. Layer-level SAC works in similar fashion as full AC, but
the wrapping is applied to every x TransformerBlock (where x is specified by the user) to implement

configurable trade-offs between memory and recompute. (Details are in Section 3.8.7.)

3.3.2 REGIONAL COMPILATION TO EXPLOIT torch.compile OPTIMIZATIONS

torch.compile was released in PyTorch 2 (Ansel et al., 2024b) with TorchDynamo as the frontend
to extract PyTorch operations into an FX graph, and TorchInductor as the backend to compile the

FX graph into fused Triton code to improve the performance.
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In TorcHTITAN, we use regional compilation, which applies torch. compile to each indi-
vidual TransformerBlock in the Transformer model. This has two main benefits: (1) we get a full
graph (without graph breaks) for each region, compatible with FSDP2 and TP (and more generally
torch.Tensor subclasses such as DTensor) and other PyTorch distributed training techniques; (2)
since the Llama model stacks identical TransformerBlock layers one after another, torch. compile
can identify the same structure is being repeatedly compiled and only compile once, thus greatly
reducing compilation time.

torch. compile brings efficiency in both throughput and memory (see Section 3.5.2) via compu-
tation fusions and computation-communication reordering, in a model-agnostic way with a simple
user interface. Below we further elaborate how torch. compile composability helps TorcHTITAN
unlock hardware-optimized performance gain with simple user interface, with the integration of

advanced features such as Asynchronous TP and Float8.

3.3.3 ASYNCHRONOUS TENSOR PARALLEL TO MAXIMALLY OVERLAP COMMUNICATION

By default, TP incurs blocking communications before/after the sharded computations, causing
computation resources to not be effectively utilized. Asynchronous TP (AsyncTP) (Wang et al.,
2022) achieves computation-communication overlap by fractionalizing the TP matrix multiplica-
tions within attention and feed-forward modules into smaller chunks, and overlapping communica-
tion collectives in between each section. The overlap is achieved by a micro-pipelining optimization,
where results are being communicated at the same time that the other chunks of the matmul are
being computed.

PyTorch AsyncTP is based on a SymmetricMemory abstraction, which creates intra-node buffers
to write faster communication collectives. This is done by allocating a shared memory buffer on
each GPU in order to provide direct P2P access (PyTorch Team, 2024b).

With TorcHTITAN’s integration of torch.compile, AsyncTP can be easily configured in TorcHTT-
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TAN to achieve meaningful end-to-end speedups (see Section 3.5.2 for details) on newer hardware

(H100 or newer GPUs with NVSwitch within a node). Usage details are in Section 3.8.8

3.3.4 BOOSTING THROUGHPUT WITH MIXED PRECISION TRAINING AND FLOAT8 SUPPORT

Mixed precision training (Micikevicius et al., 2018) provides both memory and computational sav-
ings while ensuring training stability. FSDP2 has built-in support for mixed precision training with
basic torch.dtype. This covers the popular usage of performing FSDP all-gather and computation
in a low precision (e.g. torch.bfloat16), and perform lossless FSDP reduce-scatter (gradient) in
high precision (e.g. torch.float32) for better numerical results. See Section 3.8.9 for usage details.
ToRrRcHTITAN also supports more advanced mixed precision training with Float8, a derived data
type, applied selectively to linear layers (available on newer hardware like NVIDIA H100), achiev-
ing substantial performance gains while ensuring training stability (reported in Section 3.5.2). The
Float8 feature from torchao. float8 supports multiple per-tensor scaling strategies, including dy-
namic, delayed, and static (see Micikevicius et al. (2022); PyTorch Community (2023a), Section
4.3 for details), while being composable with other key Py Torch-native systems such as autograd,

torch.compile, FSDP2 and TP (with Float8 all-gather capability) (PyTorch Team, 2024a).

3.4 PRODUCTION READY TRAINING

To enable production-grade training, TORCHTITAN offers seamless integration with key features
out of the box. These include (1) efficient checkpointing using Py Torch Distributed Checkpointing

(DCP), and (2) debugging stuck or crashed jobs through integration with Flight Recorder.
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3.4.1 SCALABLE AND EFFICIENT DISTRIBUTED CHECKPOINTING

Checkpoint save/load are crucial in training large language models for two reasons: they facilitate
model reuse in applications like inference and evaluation, and they provide a recovery mechanism
in case of failures. An optimal checkpointing workflow should ensure ease of reuse across difterent
parallelisms and maintain high performance without slowing down training. There are two typical
checkpointing methods. The first aggregates the state (model parameters and optimizer states) into
an unsharded version that is parallelism-agnostic, facilitating easy reuse but requiring expensive
communication. The second method has each trainer save its local sharded state, which speeds up
the process but complicates reuse due to embedded parallelism information.

DCP addresses these challenges using DTensor, which encapsulates both global and local tensor
information independently of parallelism. DCP converts this information into an internal format
for storage. During loading, DCP matches the stored shards with the current DTensor-based model
parameters and optimizer states, fetching the necessary shard from storage. TORCHTITAN effec-
tively uses DCP to balance efficiency and usability. Furthermore, DCP enhances efficiency through
asynchronous checkpointing by processing storage persistence in a separate thread, allowing this op-
eration to overlap with subsequent training iterations. TORCHTTTAN utilizes DCP’s asynchronous
checkpointing to reduce the checkpointing overhead by 5-15x compared to synchronous distributed

checkpointing for the Llama 3.1 8B model (PyTorch Team, 2024c).

3.4.2 FLIGHT RECORDER TO DEBUG JOB CRASHES

Debugging NCCL collective timeouts at large scales is challenging due to the asynchronous na-
ture of communication kernels. PyTorch’s Flight Recorder addresses this by logging the start, end,
and enqueue times for all collective and p2p operations, along with metadata like process groups,

source/destination ranks, tensor sizes, and stack traces.
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This data is invaluable for diagnosing hangs in parallelism code. For PP, it can pinpoint the latest
send or recv completed on the GPU, helping debug schedule bugs. For FSDP and TP, it identifies

ranks that failed to call collectives, aiding in uncovering issues with PP scheduling or TP logic.

3.5 EXPERIMENTATION

In this section, we demonstrate the effectiveness of elastic distributed training using TORCHTITAN,
via experiments on Llama 3.1 8B, 70B, and 405B, from 1D parallelism to 4D parallelism, at the scale
from 8 GPUs to 512 GPUs. We also share the knowledge and experience gained through TorcHT1-
TAN experimentation. A walkthrough of the codebase on how we apply (up to) 4D parallelism can

be found in Section 3.8.1.

3,51 EXPERIMENTAL SETUP

The experiments are conducted on NVIDIA H100 GPUs" with 95 GiB memory, where each host is
equipped with 8 GPUs and NVSwitch. Two hosts form a rack connected to a TOR switch. A back-
end RDMA network connects the TOR switches. In ToRCHTITAN we integrate a checkpointable
data loader and provide built-in support for the C4 dataset (en variant), a colossal, cleaned version
of Common Crawl’s web crawl corpus (Raffel et al., 2020a). We use the same dataset for all exper-
iments in this section. For the tokenizer, we use the official one (tiktoken) released together with

Llama 3.1.

3.5.2 PERFORMANCE

To showcase the elasticity and scalability of ToRCHTITAN, we experiment on a wide range of GPU

scales (from 8 to 512), as the underlying model size increases (8B, 70B, and 405B) with a varying

*The H100 GPUs used for the experiments are non-standard. They have HBM2e and are limited to a
lower TDP. The actual peak TFLOPs should be between SXM and NVL, and we don’t know the exact value.
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number of parallelism dimensions (up to 4D). To demonstrate the effectiveness of the optimization
techniques introduced in Section 3.3, we show how training throughput improves when adding
each individual technique on appropriate baselines. In particular, when training on a higher di-
mensional parallelism with new features, the baseline is always updated to include all previous tech-
niques.

We note that, throughout our experimentation, memory readings are stable across the whole
training process’, whereas throughput numbers (token per second, per GPU) are calculated and
logged every 10 iterations, and always read at the (arbitrarily determined) 90th iteration. We do
not report Model FLOPS Utilization (MFU) (Chowdhery et al., 2023) because when Float8 is en-
abled in TorcHTITAN, both BFLOAT16 Tensor Core and FP8 Tensor Core are involved in model
training, but they have different peak FLOPS and the definition of MFU under such scenario is not
well-defined. We note that the 1D Llama 3.1 8B model training on 8 or 128 H100 GPUs without
Float8 achieves 33% to 42% MFU.

Our experiments serve multiple objectives:

* Establish composability and modularity: TorRcHTTITAN demonstrates seamless integra-

tion of various parallelisms and optimization techniques.

* Showcase performance improvements: Significant speed-ups are observed across paral-

lelisms and optimizations.

* Validate elastic scalability: ToRCHTTTAN scales effectively with both the model size and

the number of GPUs.
* Ablation studies: Detailed performance gains for individual techniques are presented.

In particular

TDifferent PP ranks can have different peak memory usages. We take the maximum across all GPUs.
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* Table 3.1: Highlights improvements from compiler support over eager execution, followed

by further gains with Float8 training.
¢ Table 3.2: Demonstrates how earlier gains scale as the number of GPUs increases.

* Table 3.3: Shows speed-up achieved by AsyncTP (a HW/SW co-designed technique) over

2D training combined with torch.compile and Float8 training.

¢ Table 3.4: Quantifies the benefits of Interleaved 1F1B scheduling over 1F1B on top of AsyncTP,

torch.compile, and Float8 training.

* Table 3.5: Demonstrates the effectiveness of CP on enabling long context training, even at

small scale.

* Table 3.6: Demonstrate the composability of 4D parallelism, and the effectiveness of CP on

enabling long context training at large scale.

For FSDP, the ZeR O-3 variant is used for all experiments except for those involving PP where the
ZeRO-2 variant is used. This distinction is due to the inefficiency of ZeRO-3 in PP, where it incurs
additional all-gather calls for each microbatch. In contrast, ZeRO-2 gathers parameters only once

for the first microbatch and reshards after the last microbatch’s backward pass.

Table 3.1: 1D parallelism (FSDP) on Llama 3.1 8B model, 8 GPUs. Mixed precision training. Selective activation check-
pointing. Local batch size 2, global batch size 16. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
FSDP 6,258 100% 81.9
+ torch.compile 6,674 + 6.64% 77.0
+ torch.compile + Float8 9,409 +50.35% 76.8
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Table 3.2: 1D parallelism (FSDP) on Llama 3.1 8B model, 128 GPUs. Mixed precision training. Selective activation
checkpointing. Local batch size 2, global batch size 256. (Stats per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)
FSDP 5,645 100% 67.0
+ torch.compile 6,482 +14.82% 62.1
+ torch.compile + Float8 9,319 + 65.08% 61.8

Table 3.3: 2D parallelism (FSDP + TP) + torch.compile + Float8 on Llama 3.1 70B model, 256 GPUs. Mixed precision
training. Full activation checkpointing. FSDP degree 32, TP degree 8. Local batch size 16, global batch size 512. (Stats
per GPU)

Techniques Throughput (Tok/Sec) Comparison Memory (GiB)

2D 897 100% 70.3
+ AsyncTP 1,010 +12.59% 67.7

Table 3.4: 3D parallelism (FSDP + TP + PP) + torch.compile + Float8 + AsyncTP on Llama 3.1 405B model, 512 GPUs.
Mixed precision training. Full activation checkpointing. FSDP degree 4, TP degree 8, PP degree 16. Local batch size 32,
global batch size 128. (Stats per GPU)

Schedule Throughput (Tok/Sec) Comparison Memory (GiB)
1F1B 100 100% 78.0
Interleaved 1F1B 130 +30.00% 80.3

Table 3.5: FSDP + CP + torch.compile + Float8 on Llama 3.1 8B model, 8 GPUs. Mixed precision training. Full activa-
tion checkpointing. Local batch size 1. (Stats per GPU)

Schedule Sequence Length  Throughput (Tok/Sec) Memory (GiB)
FSDP 8,CP1 32,768 3,890 83.9
FSDP 4, CP 2 65,536 2,540 84.2
FSDP 2, CP 4 131,072 1,071 84.0
FSDP1,CP8 262,144 548 84.5
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Table 3.6: 4D parallelism (FSDP + TP + PP + CP) + torch.compile + Float8 + AsyncTP + 1F1B on Llama 3.1 405B
model, 512 GPUs. Mixed precision training. Full activation checkpointing. TP degree 8, PP degree 8. Local batch size 8.
(Stats per GPU)

Schedule Sequence Length  Throughput (Tok/Sec) Memory (GiB)
FSDP 8, CP1 32,768 76 75.3
FSDP 4, CP 2 65,536 47 75.9
FSDP 2, CP 4 131,072 31 77.1
FSDP1,CP 8 262,144 16 84.9

3.5.3 Lo0SS CONVERGENCE

TorcHTITAN ’s design principles have influenced the development of advanced distributed train-
ing features such as FSDP2, AsyncTP, PP, and CP in PyTorch’s distributed library. Throughout
these contributions, we have ensured the loss converging of individual techniques as well as their
various combinations of parallelisms and optimizations.

For example, below is a series of loss-converging tests covering both parallelisms and training
optimizations. We use notations of “FSDP 8” for an experiment in which the degree of FSDP is 8,
“FSDP 8, CP 8” for an experiment on 64 GPUs where FSDP degree is 8 and CP degree is 8, etc. We
assume the correctness of FSDP, which can be further verified by comparing it with DDP or even
single-device jobs.

Table 3.7: Loss-converging tests setup.

Parallelism Techniques
FSDP 8 (ground truth) default
FSDP S, TP 2,PP 2 torch.compile, Float8, async TP, Interleaved 1F1B

FSDP 8, TP 2, CP2,PP 2  torch.compile, Float8, async TP, Interleaved 1F1B
FSDP 8, CP 8 default
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loss_metrics/global_avg_loss I o

0 500 1,000 1500 2000 2500 3000 %

Run Value Step Relative
. FSDP8 33885 3000 4972hr
. FSDP8_CP8 33893 3000 1.523hr
FSDP8_TP2_PP2 33759 3000 1.527 hr
FSDP8_TP2_PP2_CP2 33844 3,000 1121 hr

Figure 3.2: Loss converging tests on Llama 3.1 8B. C4 dataset. Local batch size 4, global batch size 32. 3000 steps, 600
warmup steps.

3.6 ScALING WITH TORCHTITAN 4D PARALLELISM

Scaling large language models (LLMs) requires parallelism strategies to handle increasing model sizes
and data on thousands of GPUs. ToRCHTITAN enables efficient scaling through composable 4D
parallelism. This section highlights key observations and motivations for using TorcHT1TAN 4D

parallelism, focusing on a specific combination shown in Figure 3.3.

larger MOJEI
Long Context wmore GPUs 4D Parallelism with

Training: R long context training
CP or CP + DP PP + FSDP + CP + TP

long context
long context

larger wodel

Iarger MOJEI
1D Parallelism exposed comm 2D Parallelism exposed comm 3D Parallelism

_H
FSDP TP + FSDP

PP + TP + FSDP

easy to apply strong scaling wodel further split by layers
comm/compute Fully overlap column/rowwise sharding wicrobatching inputs with pipeline
wax tp_degree = 8 swall s, bubble decided by schedul
—
2 - 512 GPUs 512 - 4192 GPUs wmore than 4192 GPUs

Figure 3.3: Scaling with 4D Parallelism
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3.6.1 Scaring wiTH FSDP

ESDP (ZeRO) is a general technique applicable to any model architecture and is often sufficient
as the first degree of parallelism when communication is faster than computation (e.g., up to 512
GPUs). However, with larger scales, collective latency increases linearly with the world size, limiting

efficiency. To overcome this, model parallelism like TP and PP can be combined with FSDP.

3.6.2 2D Pararrevrism: TP wita FSDP

Tensor Parallelism (TP) reduces collective latency by distributing work across GPUs, enabling
smaller effective batch sizes and reducing peak memory usage for large models or sequence lengths.
Combining FSDP and TP allows strong scaling with a fixed problem/batch size (Details shown in
Figure 3.5). TP also improves FLOP utilization by optimizing matrix multiplication shapes. How-
ever, TP introduces blocking collectives and is typically limited to intra-node scaling (e.g., NVLink),

with degrees usually capped at 8. Scaling beyond 4192 GPUs requires combining TP with PP.

3.6.3 3D PArRALLELISM: PP wiTH 2D PARALLELISM

Pipeline Parallelism (PP) reduces communication bandwidth requirements by transmitting only
activations and gradients between stages in a peer-to-peer manner. PP is particularly effective for
mitigating FSDP communication latency at larger scales or in bandwidth-limited clusters. The

efficiency of PP depends on pipeline schedules and microbatch sizes, which influence the size of

pipeline “bubbles.”

3.6.4 LoNG CONTEXT TRAINING AND 4D PARALLELISM

Context Parallelism (CP) allows ultra long context training by splitting the context (sequence) di-

mension across GPUs to avoid OOM errors. CP is mainly used for long context training, to give the
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model capability to capture more correlations for tokens, thus enhancing the overall model quality.
For scaling sequence length, CP can be used alone or together with DP. When training large models
or on large number of GPUs, we can combine CP with 3D paralleism, where TP usually keeps the

innner-most DeviceMesh dimension, and CP applies in the next outer DeviceMesh dimension.

3.7 RELATED WORK

Existing libraries such as Megatron-LM (Narayanan et al., 2021), DeepSpeed (Rasley et al., 2020),
veScale (Inc., 2024), and PyTorch Distributed (Paszke et al., 2019; Meta Platforms, Inc., 2024)
offer APIs to support distributed training workflows. However, they often fall short in terms of
flexibility, seamless integration, and scalability. In contrast, TORCHTITAN is designed to overcome
these limitations by natively supporting essential features that are missing or insufficiently addressed
in current frameworks.

Slapo (Chen et al., 2023) introduces a schedule language to convert a Py Torch model for com-
mon model training optimizations such as 3D parallelism, and supports progressive optimization
through high-level primitives. In contrast, TORCHTITAN provides modular and composable APIs
built on DTensor and DeviceMesh.

We note that each of these libraries has its own strengths, and ToRcHTITAN is designed to pro-
vide foundational components that can be leveraged by all of them. We now present a detailed qual-

itative comparison, including feature breakdowns and code complexity analysis.

3,71 ToRCHTITAN ENABLES NEW DESIGNS

TorcHTITAN ’s extensive feature set and broad design space coverage are driven by its unified
design principles i.e. modularity, composability, and extensibility. Leveraging these principles,

ToRcHTITAN seamlessly integrates diverse parallelism strategies (FSDP, TP, PP, and CP) and opti-
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mizations (e.g., SAC, Float8 training). This unified framework not only supports advanced pipeline
schedules and multi-dimensional parallelism but also simplifies the integration of new techniques,
making it highly adaptable for cutting-edge research and production-grade deployments.

The following table highlights TORCHTITAN ’s capabilities in context of parallelism, checkpoint-

ing and compiler support offerings compared to Megatron-LM, DeepSpeed, and veScale:

3.7.2 CobpE COMPLEXITY AND MAINTAINABILITY

ToRrcHTITAN ’s design principles also contribute to its significantly reduced code complexity. De-
spite offering a rich feature set, TORCHTITAN maintains a compact and modular codebase, making
it easier to extend, maintain, and evolve while ensuring high performance. The following table com-

pares the lines of code (LOC) for TorcHTITAN With Megatron-LM and DeepSpeed:

3.8 IMPLEMENTATION DETAILS

3.8.1 CoOMPOSABLE 4D PARALLELISM WALKTHROUGH

We have discussed the scaling with TORCHTITAN 4D parallelism and the motivations to apply dif-
ferent parallelisms to scale training to thousands of GPUs. In this section we will walk through the
4D parallelism code in TORCHTITAN.

The first step is to create an instance of the model (e.g. the Transformer for Llama models) on
the meta device. We then apply PP by splitting the model into multiple PP stages according to the
pipeline_parallel_split_points config. Note that for PP with looped schedules, we may obtain
multiple model_parts from PP splitting, where each item in model_parts is one stage-model-chunk.

Next we apply SPMD-style distributed training techniques including TP, activation checkpointing,

tCustom Fusion Kernels
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Table 3.8: Comparison of TorchTitan with Megatron-LM, DeepSpeed, and veScale with respect to parallelism, compiler
support, activation checkpointing, and model checkpointing.

Features TorcHTITAN Megatron-LM DeepSpeed veScale
FSDP-Zero2 Yes Yes Yes No
FSDP-Zero3 Yes Yes Yes No
HSDP Yes Yes No No
TP Yes Yes No Yes
Async TP (Micro-pipelining) Yes Yes No Yes
CP Yes Yes No No
PP-Gpipe Yes Yes Yes No
PP-Interleaved (1F1B) Yes Yes Yes Yes
PP-Looped-BFS Yes No No No
PP-1F1B Yes Yes Yes Yes
PP-Flexible-Interleaved-1F1B Yes No No No
PP-ZeroBubble Yes No No Yes
(TP+SP)+PP Yes Yes No Yes
DDP+(TP+SP)+PP Yes Yes No Yes
FSDP+(TP+SP) Yes No No No
FSDP+(TP+SP)+PP Yes No No No
FSDP+(TP+SP)+PP+CP Yes No No No
MoE Ongoing Yes No No
Full AC Yes Yes Yes Yes
Flexible SAC Yes No No No
DCP Yes Yes Yes Yes
Float8 Training Yes Yes No No
torch.compile Yes No* Partial No

Table 3.9: Lines of Code (LOC) comparison across systems.

Lines of Code (LOC) TorcHTITAN Megatron-LM  DeepSpeed
Core Codebase 7K 93K 94K
Total Codebase (Including Utils) 9K 269K 194K
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torch.compile, FSDP, and mixed precision training for each model part, before actually initializing

the sharded model on GPU.

# meta init
with torch.device("meta”):

model = model_cls.from_model_args(model_config)

# apply PP
pp_schedule, model_parts = models_pipelining_fns[model_name](

model, pp_mesh, parallel_dims, job_config, device, model_config, loss_fn

for m in model_parts:
# apply SPMD-style distributed training techniques
models_parallelize_fns[model_name](m, world_mesh, parallel_dims, job_config)
# move sharded model to GPU and initialize weights via DTensor
m.to_empty(device="cuda”)

m.init_weights()

To apply PP to the model, we run the following code at the high level. pipeline_llama_manual_split
splits the model into multiple stages according to the manually given pipeline_parallel_split_points
config, by removing the unused model components from a complete model (on the meta device).
Then build_pipeline_schedule make the pipeline schedule with various options from torch.distributed.pipelining,
including 1F1B (Narayanan et al., 2019), GPipe (Huang et al., 2019b), interleaved 1F1B (Narayanan

etal., 2021), etc. instructed by the pipeline_parallel_schedule config.
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stages, models = pipeline_llama_manual_split(

model, pp_mesh, parallel_dims, job_config, device, model_config
)
pp_schedule = build_pipeline_schedule(job_config, stages, loss_fn)

return pp_schedule, models

TP and FSDP are applied in the SPMD-style models_parallelize_fns function. To apply TP,
we utilize the DTensor parallelize_module API, by providing a TP “plan” as the instruction of
how model parameters should be sharded. In the example below, we showcase the (incomplete) code

for sharding the repeated TransformerBlock.

for layer_id, transformer_block in model.layers.items():
layer_tp_plan = {

"attention_norm”: SequenceParallel(),

"attention”: PrepareModuleInput(
input_layouts=(Shard(1), None),
desired_input_layouts=(Replicate(), None),

).

"attention.wq”: ColwiseParallel(),

}

parallelize_module(
module=transformer_block,
device_mesh=tp_mesh,

parallelize_plan=layer_tp_plan,
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Then, we apply the FSDP by wrapping each individual TransformerBlock and then the whole
model. Note that the FSDP2 implementation in Py Torch comes with mixed precision training
support. By default, we use torch.bfloat16 on parameters all-gather and activation computations,

and use torch. float32 on gradient reduce-scatter communication and optimizer updates.

mp_policy = MixedPrecisionPolicy(param_dtype, reduce_dtype)

fsdp_config = {"mesh”: dp_mesh, "mp_policy”: mp_policy}

for layer_id, transformer_block in model.layers.items():

# As an optimization, do not reshard_after_forward for the last
# TransformerBlock since FSDP would prefetch it immediately
reshard_after_forward = int(layer_id) < len(model.layers) - 1
fully_shard(

transformer_block,

**fsdp_config,

reshard_after_forward=reshard_after_forward,
)

fully_shard(model, **fsdp_config)

Independently, we can apply CP by running each training iteration under a Python context man-

ager.

optional_context_parallel_ctx = (
utils.create_context_parallel_ctx(

cp_mesh=world_mesh["cp”],
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cp_buffers=[input_ids, labels] + [m.freqs_cis for m in model_parts],

cp_seq_dims=[1, 1] + [0 for in model_parts],
cp_no_restore_buffers={input_ids, labels},
cp_rotate_method=job_config.experimental.context_parallel_ rotate_method,

)

if parallel_dims.cp_enabled

else None

with train_context(optional_context_parallel_ctx):

pred = model(input_ids)

loss = loss_fn(pred, labels)

3.8.2 FuLLY SHARDED DATA PARALLEL

FSDP2 advances the tensor sharding approach by replacing the original FSDP1 FlatParameter shard-
ing. Specifically, parameters are now represented as DTensors sharded on the tensor dimension 0.
This provides better composability with model parallelism techniques and other features that re-
quires the manipulation of individual parameters, allowing sharded state dict to be represented by
DTensor without any communication, and provides for a simpler meta-device initialization flow
via DTensor. For example, FSDP2 unlocks finer grained tensor level quantization, especially Float8
tensor quantization, which we will showcase in the results section.

As part of the rewrite from FSDPI1 to FSDP2, FSDP2 implements an improved memory man-
agement system by avoiding using record stream. This enables deterministic memory release, and as

a result provides lower memory requirements per GPU relative to FSDP1. For example on Llama 2
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7B, FSDP2 records an average of 7% lower GPU memory versus FSDPI.

In addition, by writing efficient kernels to perform multi-tensor allgather and reduce scatter,
FSDP2 shows on-par performance compared to FSDP1, with even slight performance gains - using
the Llama 2 7B, FSDP2 shows an average gain of 1.5% faster throughput.

The performance gains are the result of employing two small performance improvements. First,
only a single division kernel is run for the FP32 reduce scatter (pre-dividing the local FP32 reduce-
scatter gradient by world size, instead of a two step pre and post divide by square root of world size).
Secondly, in TorcHTITAN, FSDP2 is integrated with a default of not re-sharding the final block in
a transformer layer during the forward pass, since it will be immediately re-gathered at the start of
the backward pass.

Usage: TORCHTITAN has fully integrated FSDP2 as the default parallelism when training, and
the data_parallel_shard_degree is the controlling dimension in the command line or TOML file.
Note that for ease of use, the default data_parallel_shard_degree is -1, means to simply use all

GPUs available, so user do not need to specify the actual world size.

3.8.3 HYBRID SHARDED DATA PARALLEL

Hybrid Sharded Data Parallel (HSDP) is an extension of FSDP (Zhang et al., 2022a). In FSDP,
communication occurs between all devices within the FSDP group. However, at some point, the
FSDP communication overhead exceeds its corresponding computation because the latency of
allgather/reduce-scatter communications increases linearly with the number of devices. This results
in low MFU and becomes worthless to add more GPUs for scaling.

HSDP obviates this to some degree by creating a 2-D DeviceMesh that contains replica groups
on one dimension and shard groups on the other dimension, where each shard group runs FSDP
and the replica group runs normal data parallel. This ensures the FSDP communications happen in

a fraction of the original world size, with the addition of backward gradient allreduce across replica
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groups. HSDP reduces FSDP communication overhead and allows further scaling with data paral-
lel.

Usage: TorRcHTITAN makes it easy to experiment with HSDP by using the two configurable
settings: data_parallel_shard_degree and data_parallel_replicate_degree, which controls
the degree of the shard and replica groups we are creating. The product of both replicate and shard

degree is the actual data parallel world size.

3.8.4 TENSOR PARALLEL

TP partitions the attention and feed forward network (MLP) modules of a transformer layer across
multiple devices, where the number of devices used is the TP degree. This allows for multiple GPUs
to cooperatively process the same batch by using the local sharded model parameters, at the cost of
adding all-reduce/all-gather/reduce-scatter operations to synchronize intermediate activa-
tions.

Due to the additional collectives introduced by TP, it needs to happen within a fast network
(i.e NVLink). When training LLMs, TP is usually combined with FSDP, where TP shards within
nodes and FSDP shards across nodes to create the 2D hierarchical sharding on different DeviceMesh
dimensions.

Usage: Because of the synergistic relationship between TP and SP, ToRcHTITAN natively bun-
dles these two together and they are jointly controlled by the TP degree setting in the command line
or the TOML entry of tensor_parallel_degree. Setting this to 2 for example would mean that 2
GPUs within the node will share the computational load for each transformer layers attention and
MLP modules via TP, and normalization/dropout layers via Sequence Parallel. Loss Parallel is im-
plemented via a context manager as it needs to control the loss computation outside of the model’s

forward computation. It can be enabled via enable_loss_parallel.
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Figure 3.4: Tensor Parallel in detail (2 GPUs, data moves from left to right).

3.8.5 PirPELINE PARALLEL

We expose several parameters to configure PP. pipeline_parallel_degree controls the number

of ranks participating in PP. pipeline_parallel_split_points accepts a list of strings, represent-
ing layer fully-qualified-names before which a split will be performed. Thus, the total number of
pipeline stages 7 will be determined by the length of this list. pipeline_parallel_schedule accepts
the name of the schedule to be used. If the schedule is multi-stage, there should be /' > 1 stages
assigned to each pipeline rank, otherwise /' == 1. pipeline_parallel_microbatches controls the

number of microbatches to split a data batch into.
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Figure 3.5: FSDP2 + Tensor Parallel (TP degree 4) sharding layout, with 2 nodes of 4 GPUs.

3.8.6 ENABLING 4D PARALLEL TRAINING: CONTEXT-PARALLEL (CP)

To address context scaling, we have incorporated Context Parallelism (CP) into TorcHT1TAN. Fol-
lowing the principles of modular design of TorcHTITAN, CP was integrated via a context manager
that dynamically replaces calls to attention operators (namely, scaled_dot_product_attention)
with CP operations, ensuring no changes to the model code are required.

Under the hood, CP shards the DTensor along the sequence dimension across the CP device
mesh. It extends the DTensor dispatcher to handle CP-specific operations, such as Ring Attention
and causal attention load balancing, ensuring efficient operation. By extending DTensor’s capabil-

ities to support CP, ToRCHTITAN ensures that CP is fully compatible with all other parallelisms
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(FSDP, TP, PP), optimizations (e.g., activation checkpointing, torch.compile), and DCP. This
demonstrates the extensibility of TORCHTITAN ’s modular design, which accommodates future

optimizations seamlessly while maintaining performance and compatibility.

3.8.7 ACTIVATION CHECKPOINTING

TorcHTITAN offers two types of Selective Activation Checkpointing which allow for a more nu-
anced tradeoft between memory and recomputation. Specifically, we offer the option to selectively
checkpoint “per layer” or “per operation”. The goal for per operation is to free memory used by op-
erations that are faster to recompute and save intermediates (memory) for operations that are slower
to recompute and thus deliver a more effective throughput/memory trade-oft.

Usage: AC is enabled via a two-line setting in the command line or TOML file. Specifically, mode
can be either none, selective, or full. When selective is set, then the next config of selective_ac_type
is used which can be either a positive integer to enable selective layer checkpointing, or op to enable
selective operation checkpointing. Per layer takes an integer input to guide the checkpointing pol-
icy, where 1 = checkpoint every layer (same as full), 2 = checkpoint every other layer, 3 = checkpoint
every third layer, etc. Per op(eration) is driven by the _save_list policy in parallelize_llama.py
which flags high arithmetic intensity operations such as matmul (matrix multiplication) and SPDA
(Scaled Dot Product Attention) for saving the intermediate results, while allowing other lower in-
tensity operations to be recomputed. Note that for balancing total throughput, only every other

matmul is flagged for saving.

3.8.8 AsyncTP

The SymmetricMemory collectives used in AsyncTP are faster than standard NCCL collectives and

operate by having each GPU allocate an identical memory buffer in order to provide direct P2P
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access. SymmetricMemory relies on having NVSwitch within the node, and is thus generally only
available for H100 or newer GPUs.
Usage: AsyncTP is enabled within the experimental section of the TorcHTITAN TOML config

file and turned on or off via the enable_async_tensor_parallel boolean setting.

3.8.9 CustoMIZING FSDP2 Mixep PRECISION IN TORCHTITAN

Mixed Precision is controlled by the MixedPrecisionPolicy class in the apply_fsdp function,
which is then customized with param_dtype as BF16, and reduce_dtype defaulting to FP32 by de-
fault in TORCHTITAN. The reduce_dtype in FP32 means that the reduce-scatter in the backwards
pass for gradient computation will take place in FP32 to help maximize both stability and precision

of the gradient updates.

3.9 SUMMARY

ToRrcHTITAN is a powerful and flexible framework for LLM training, enabling seamless compos-
ability of parallelism techniques (FSDP, TP, PP, CP), memory optimizations (Float8, activation
checkpointing), and PyTorch compiler integration for enhanced efficiency. Its modular design sup-
ports evolving architectures and hardware, fostering innovation with multi-axis metrics.

Designed for interpretability and production-grade training, ToRCHTTTAN offers elastic scal-
ability, comprehensive training recipes, and expert guidance on distributed training strategies. As
demonstrated in experiments, it accelerates training by 65.08% on Llama 3.1 8B (128 GPUs, 1D),
12.59% on Llama 3.1 70B (256 GPUs, 2D), and 30% on Llama 3.1 405B (512 GPUs, 3D) over op-
timized baselines, while enabling long-context training with 4D composability. With its robust fea-
tures and high efficiency, TORCHTITAN is an ideal one-stop solution for challenging LLM training

tasks.
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4

TorchSim: High Fidelity Runtime and
Memory Estimation for Distributed

Training
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In the previous chapter, we introduced TORCHTITAN, a modular and production-grade training
framework that synthesizes efficient implementations for arbitrary distributed training configura-
tions. While ToRcHTITAN enables scalable execution of these configurations across thousands of
GPUgs, selecting the right configuration remains a key challenge. Given the vast design space of par-
allelism strategies, memory optimizations, and precision settings, it is essential to evaluate whether
a candidate configuration will execute successfully and deliver acceptable performance before com-
mitting to full-scale training.

In this chapter, we introduce ToRCHSIM, a simulation-based tool for estimating runtime and
memory consumption in distributed deep learning training without requiring actual GPU execu-
tion. ToRCHSIM enables users to efficiently navigate the large and complex configuration space
exposed by TORCHTITAN and reason about the performance implications of different training
strategies.

ToRrRcHSIM constructs hardware-aware compute models as well as topology-, algorithm-, and
collective-aware communication models to accurately predict operator execution times. It employs a
detailed simulator that closely mirrors the multi-stream GPU execution model, capturing compute
and communication overlap, exposed communication, and synchronization overheads to estimate
end-to-end runtime. For memory estimation, ToRCHSIM tracks tensor lifetimes at operator-level
granularity without allocating memory and emulates allocations introduced by distributed collective
operations. By mimicking PyTorch’s memory management and execution behavior, TorcHSIM
allows users to simulate and compare training and cluster configurations before execution, thereby

eliminating the need for costly empirical benchmarking.
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4.1 DEer1vING TorcHSIM’s DESIGN

Thus far, we have established the need for a fast, efficient (GPU execution-free), and high-fidelity
runtime and memory estimation tool for comprehensively exploring the performance space of con-
figurations for distributed model training . Furthermore, we have shown that this necessitates faith-
tully emulating the low-level execution semantics of a distributed training configuration.

In this section, we derive the foundational design principles of ToRCcHSIM that comprehensively

encompass the problem space in §4.1.1 and present the high-level design of TorcHSIM in §4.1.2.

411 COMPLEXITY OF DISTRIBUTED MODEL TRAINING INFORMS THE DESIGN PRINCI-

PLES OF TORCHSIM
The following are the core design principles:

(D1) Model-Agnostic. TorcHSIM must accommodate diverse model architectures (e.g., trans-
formers, state space models, diffusion models) with varying features such as the number of layers,

hidden dimensions, and different attention or convolution mechanisms.

(D2) Algorithm and Implementation Coverage. Given the wide variety of distributed train-
ing techniques (e.g., FSDP, TP, CP, PP, EP) and optimizations (such as mixed precision training
and activation checkpointing), TorRcHSIM must seamlessly support all distributed parallelisms,
algorithms, and their various compositions and implementations, faithfully capturing model perfor-

mance across diverse training setups.

(D3) Non-Intrusive. Since users typically rely on off-the-shelf training recipes, ToRCHSIM must
integrate seamlessly without requiring modifications to existing model definitions or training

scripts.

(D4) Accurate End-to-End Estimation. TorRCHSIM must deliver reliable runtime and mem-
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ory estimates that consider hardware heterogeneity, memory hierarchy, kernel implementations,
network topology, and algorithm-specific details, faithfully modeling real accelerator performance
while emulating the GPU stream execution model and adhering to stream runtime, memory, and

synchronization semantics.

(D5) GPU Execution-Free and Fast. To remain cost-effective, ToRCHSIM should perform execu-
tion and memory estimation without requiring access to a GPU cluster. All estimations should run
efficiently on a commodity CPU machine with minimal overhead, since exploring the full perfor-

mance space requires evaluating thousands or even millions of training configurations

(D6) Insightful. Beyond providing aggregate estimates, ToRCHSIM should offer detailed insights
such as runtime breakdowns (e.g., exposed versus overlapped communication at module and oper-
ator levels) and memory categorization (e.g., distinguishing parameters, activations, gradients, and

optimizer states) with clear attribution.

(D7) Modular and Extensible. TorcHSIM should maintain a modular design to enable seamless
replacement or extension of individual components as training techniques, hardware architectures,
and execution engines evolve. As the landscape of training methodologies continues to grow in
complexity, ensuring ease of integration without introducing unintended side effects becomes in-

creasingly important..

4.1.2 TorcuSiM HicH LEVvEL DESIGN

ToRrcHSIM comprises three core components: TorcHSIM Capture, TorcHSIM Simulator, and
TorcHSIM Models, as illustrated in Figure 4.1. TorcHSIM Capture acts as an extensible wrap-
per around the PyTorch Runtime Paszke et al. (2019), interpreting the training run as a sequence
of operator dispatches. It intercepts these dispatches to collect metadata on operators, memory us-

age, and synchronization events. TorcHSIM Models provide runtime predictions at the operator
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Figure 4.1: TorchSim: High-level System Design

level, which are integrated into the captured metadata. This enriched metadata is then passed to
the TorcHSIM Simulator, which emulates GPU stream execution semantics to produce accurate

end-to-end estimates of runtime and memory usage.

4.2 TorcHSIM CAPTURE AND WORKFLOW

In this section, we detail how TorcHSIM’s design realizes the design principles in §4.2.1, and finally,

provide an end-to-end walkthrough of TorcHSIM’s workflow in §4.2.2.

421 TorcHSIM CAPTURE

We now describe how the internal mechanisms of TorcHSIM Capture materialize the outlined

design principles to enable the generation of comprehensive runtime and memory statistics.

(1) Functionality: Simulating Operator Execution [D5]. To enable GPU-free execution, the
training script must run seamlessly while mimicking execution on the target hardware. This allows

ToRCHSIM to generate accurate predictions using only inexpensive, commodity hardware.
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Figure 4.2: Actual and Fake Tensor Representation.

Enabler: FakeTensorMode. In PyTorch, each tensor comprises two core components: metadata
and storage Paszke et al. (2019). Metadata includes attributes such as shape, dtype, device, stride,
layout, requires_grad, and pin_memory, while the Storage object contains the raw data and allows

for efficient memory sharing among tensors, as illustrated in Figure 4.2.

For simulation, only metadata is required, as it determines storage requirements and serves as
input to subsequent operations. TORCHSIM tracks a tensor’s size, device, dtype, and requires_grad
flag. PyTorch’s FakeTensors support this abstraction by representing tensors without actual data,
placing them on an abstract meta device while recording their intended execution device via the

fake_device attribute Contributors (2025).

However, FakeTensors alone do not enable full training execution without GPUs. Operators
must still execute correctly on them, including proper metadata propagation. FakeTensorMode Con-
tributors (2025) enables this by managing fake tensor creation, applying operations, and propagat-
ing metadata. ToRCHSIM runs under Fake TensorMode, which enables both GPU-free execution

and accurate memory estimation.

(2) Functionality: Simulating Communication Collectives [D2, D5]. In distributed training,
ToRrcHSIM must simulate a dummy collection of devices that mirrors the actual training config-
uration and its communication groups. This setup allows collective operations issued during an

iteration to execute as if real communication had taken place.
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Enabler: FakeProcessGroup. PyTorch uses the DeviceMesh and ProcessGroup abstractions to man-
age communication collectives such as all_gather and reduce_scatter. A DeviceMesh is a multi-
dimensional representation of devices, where each dimension corresponds to a specific parallelism
strategy. Each DeviceMesh is associated with a ProcessGroup, and each dimension forms a Sub-Mesh

with its own Sub—ProcesxGroup.

Collectives are issued to specific Sub/DeviceMesh objects and executed by the corresponding Sub-
/ProcessGroup. FSDP, TP, and CP follow the Single Program, Multiple Data (SPMD) model, where
each device runs the same program on different data or model shards. FSDP shards parameters and
processes separate microbatches; CP splits sequences; TP partitions model blocks (e.g., attention
heads). Since all devices execute identical code, analyzing one SPMD process suffices for mem-
ory and runtime estimation. In contrast, PP uses the Multiple Program, Multiple Data (MPMD)
paradigm, dividing the model into sequential stages across devices. Each stage runs a different code
on different data. PP is typically combined with SPMD strategies (FSDP, TP, CP) within each
stage. Here, memory/runtime can be estimated per SPMD stage, but accurate timing requires mod-

eling inter-stage communication and scheduling dependencies.

To emulate distributed execution without actual communication, TorRcHSIM replaces Process-
Group with FakeProcessGroup Contributors (2024). This fake process group simulates a virtual
collection of devices, ensuring that collectives invoked under FakeTensorMode return Fake Tensors

and dummy synchronization objects with correct metadata.

(3) Functionality: Intercepting Operator Dispatch [D1, D2, D3]. To ensure that TORCHSIM
remains model-agnostic, independent of specific optimization techniques and implementations,
and non-intrusive, it operates at the granularity of individual operators. It interprets a training run
as a sequence of operator dispatches, where each operator processes input tensors and produces

output tensors. Since tensors are dynamically created—explicitly by users, through operations, or
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implicitly by the autograd engine—ToRCcHSIM must intercept every tensor operation and capture

relevant metadata to estimate runtime and track memory usage.

Enabler: TorchDispatchMode. At runtime, PyTorch’s Dispatcher routes each operation to the ap-
propriate kernel based on the tensor’s device, dtype, and the operator type. TorchDispatchMode is a
context manager that enables interception by overriding the torch.__dispatch__ method, providing
access to the operator, its arguments, and results He et al. (2022). TorcHSIM extends TorchDis-

patchMode to systematically capture all tensor operations for accurate execution analysis.

For memory estimation, TORCHSIM extracts metadata from the resultant tensors, recording

attributes such as size, device, and dtype for every operation encountered in the dispatcher.

For runtime estimation, once an operation is intercepted, it is classified as either a compute op-
eration (e.g., matmaul, layernorm) or a communication collective (e.g., 2/l_gather, reduce_scatter).
ToRrcHSIM then extracts relevant features: for compute operations, this includes deype, input/ont-
put shapes, and backend-specific details; for communication collectives, it includes data size, collec-

tive type, and process group.

The extracted metadata is used to populate the simulation data structures defined in Tables 4.1
and 4.2. TorcHSIM records the CUDA stream, resource type, estimated runtime, and CPU dis-
patch order for each dispatched operation. It distinguishes between compute and collective oper-
ations, using the associated process group to infer resource usage for the latter. Each operation is

enqueued into the queue corresponding to the current CUDA stream.

For non-functional collectives that return a Work object, the operation metadata (op_info) is reg-
istered to the work’s unique seq_id in the work_registry, enabling later correlation with work.wait().
For functional collectives, which return one or more Tensors, the underlying storage of each ten-
sor is mapped to the originating operation in the wait_tensor_registry, allowing subsequent

wait_tensor () calls to synchronize with the correct producer.
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Resource State SyncAction
INTRA_COMM | WAITING | STREAM_WAIT
INTER_COMM | RUNNING | EVENT_WAIT

CcompP READY SYNC_WAIT

HOST_TO_MEM | COMPLETE | STREAM_RELEASE

MEM_TO_HOST EVENT_RELEASE
WORK_WAIT

WORK_RELEASE

Table 4.1: Enumeration classes representing the Resources, Queue states and Synchronization actions for primitives.

(4) Functionality: Capturing Synchronization Primitives [D2, D4]. The final requirement for
ToRCHSIM is to capture synchronization metadata essential for simulating GPU stream execution.
This is critical for supporting comprehensive algorithm and implementation coverage across all
distributed training techniques. As summarized in Table 4.3, we identify eight synchronization

primitives that are sufficient to emulate these techniques.

Enabler: Dynamic Function Overriding. Because synchronization primitives do not operate

on tensors, they are not intercepted by TorchDispatchMode. To capture them, TORCHSIM uses
dynamic function overriding to hook into their execution and extract relevant metadata. During
simulated execution of the training script, ToRCHSIM incrementally records this metadata as each

synchronization primitive is encountered.

Table 4.3 outlines the synchronization primitives intercepted and modeled by TorcHSIM, along
with the logic used to capture their semantics. The left column presents the high-level primitive
(e.g., stream waits, event records, global syncs), while the right column describes how TorcHSIM
records the synchronization metadata into its internal data structures. This includes queuing wait
and release records linked to stream or event identifiers, initializing global synchronization depen-

dencies, and mapping work- or tensor-based waits to their corresponding producer operations.
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SyncInfo

sync_action
release_event_id
release_seq_id

The action type (from SyncAction).
Identifiers for event-based, op-based, or global synchronizations.

sync_infos

wait_sync_infos

[-1] sync seed

sync_id
OpInfo
seq_id Unique ID assigned to the op in CPU dispatch order.
stream_id CUDA stream ID the op is dispatched to.
resource Set of resources (e.g., compute, communication) used by the op
(from Resource).
run_time Estimated and remaining runtime during simulation.
rem_time
Queue
stream_id CUDA stream ID and priority corresponding to the queue.
priority
state Current execution state of a queue (from State).
ops List of 0pInfo objects dispatched to this stream.

Maps op seq_id to a set of SyncInfo records to be applied post-

execution.
Tracks currently blocking conditions. A queue can only transition

from WAITING to READY when this dict is empty.
Global sync ops pre-injected at key -1 to ensure early synchroniza-
tions are honored

Simulator

streamid_to_queue
seq_id
work_registry
wait_tensor
registry
global_sync_infos

sync_count
event_wait_ids

event_record_ids
T_sim

resource_occupancy
completed_ops
recorded_events

Maps each CUDA stream to its Queue.

Global counter assigning unique ID to each dispatched op.

Maps the seq_id of a Work object to the OpInfo that produced it.
Maps a tensor’s underlying storage to the list of 0pInfo objects that
produced it.

Global set of sync ops that apply to all queues and are applied when
the queue is first captured.

To differentiate individual synchronize() calls.

Track which event IDs have been waited on or recorded, respectively.

Running total of simulated time.

Tracks which queues are currently occupying which resources.
Set of operation IDs that have completed execution.

Set of event IDs that have been recorded.

Table 4.2: Classes describing the Synchronization, Operator, Queue, and Simulator Metadata.
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Primitive Semantics

Capturing Primitives in TORCHSIM

Stream Synchronization

s1.wait_stream(s2)
Blocks future ops on s1 until
all work in s2 completes.

If s2.last_op_seq_id # —1:
seqID = s2.last_op_seq_id
Add STREAM_WAIT(seqID) to s1’s queue.
Add STREAM_RELEASE (seqID) to s2’s queue.

s.wait_event(e)
Delays ops on s until event e
is recorded.

Get eventID, add to eventWaitIDs.
Add EVENT_WAIT(eventID) to s’s queue.

s.synchronize()
Blocks CPU until all ops in

stream s complete.

If last_op_seq_id # —1:
seqID = s2.last_op_seq_id
Add STREAM_WAIT(seqID) to all queues.
Add STREAM_RELEASE(seqID) to s’s queue.
Add global sync STREAM_WAIT(seqID).

Event Synchronization

e.wait(s)
Delays stream s until event e
is recorded.

Get eventID, add to eventWaitIDs.
Add EVENT_WAIT(eventID) to s’s queue.

e.synchronize()
Blocks CPU until all work

tied to event e is complete.

Get eventID from e, add to eventWaitIDs.
Add EVENT_WAIT(eventID) to all queues.
Add global sync EVENT_WAIT(eventID).

e.record(s)
Marks event e at the current
point in stream s.

Get eventID, add to eventRecordIDs.
Enqueue zero-runtime event_record op.
Add EVENT_RELEASE(eventID) to s’s queue.

Global and Work Synchronization

synchronize()
Blocks CPU until all opera-

tions across streams complete.

Increment global sync_count.
Add SYNC_WAIT(sync_count) to all queues.
Add global sync SYNC_WAIT(sync_count).

work.wait()

Blocks until async work com-
pletes.

wait_tensor(t)

Delays ops on t until its pro-
ducer completes.

Forwork.wait():
Extract workSeqlID, retrieve opInfos
from workRegistry.
Forwait_tensor(t):
Extract storage from t, retrieve opInfos
from waitTensorRegistry.
For each opInfo:
seqID = opInfo.seq_id
Add WORK_WAIT(seqID) to all queues.
Add WORK_RELEASE (seqID) to originating
queue at position seqID.
Add global sync WORK_WAIT(seqID).

Table 4.3: Synchronization primitives with PyTorch semantics and detailed actions captured by TorchSim.
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4.2.2 TorcHSIM WORKFLOW

We now present a detailed walkthrough of TorcHSIM’s end-to-end workflow, as illustrated in Fig-

ure 4.3.

1. Input. The input to TORCHSIM is a t7ain_step function that receives the model, optimizer,
and a sample mini-batch, executing the forward and backward pass, followed by the optimizer step
and gradient zeroing.

2. MPMD/SPMD Estimation.

For SPMD estimation, TORCHSIM initiates a single process with a FakeProcessGroup and runs
execution under Fake TensorMode. For MPMD estimation, TorcHSIM launches N processes with
FakeProcessGroup, each corresponding to a pipeline stage. Memory estimation is handled indepen-
dently for each stage, while runtime estimation requires coordination between SPMD processes,
managed by the runtime simulator.

3. Memory Estimation.

ToRcHSIM estimates memory usage by tracking tensors and their liveness throughout the train-
ing workflow. Before executing t7ain_step, it extracts tensors from the model’s parameters, opti-
mizer states, and inputs. To maintain an accurate view of memory consumption, it dynamically
updates a live current_snapshot representing the current memory state. Whenever tensor creation,
deletion, or resizing occurs, TORCHSIM updates peak statistics, ensuring that peak_snapshot always
reflects the maximum observed memory usage. Accurately estimating memory involves tracking
tensor liveness, resolving shared storage ambiguities, attributing memory to sources and phases, and
categorizing usage, all of which TorcHSIM addresses in Section 4.3.

4. Operator Runtime Estimation.

Compute time is estimated using learned cost models, analytical roofline models, or fallback

kernels (Section 4.4), while communication time is predicted using topology- and algorithm-aware
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analytical models and statistical learned models (Section 4.5).

S. Runtime Simulator The runtime simulator then processes the captured simulation metadata
to emulate GPU multi-stream GPU execution model (§ 4.6) to estimate the end-to-end runtime.

6. Output. The output includes a module-wise runtime breakdown with estimated compute
time, communication time, simulated end-to-end runtime, and exposed communication time (not
overlapped with compute). Memory estimation results provide peak memory breakdown and snap-

shots captured at different stages of a module’s execution.

4.3 TorcHSIM MEMORY SIMULATOR

Accurate memory estimation involves addressing several critical challenges. How can tensor liveness
(creation and deletion) be tracked without interfering with garbage collection? Given that multi-
ple tensors can share underlying storage, how do we prevent over- or under-estimation of memory
usage? Beyond identifying peak memory consumption, how can we accurately attribute memory
usage to specific sources, determining which module created a tensor and whether the allocation
occurred during the forward or backward pass? Additionally, how can memory usage be effectively
categorized (e.g., activations, gradients, activation gradients, optimizer states) and quantified per
module? Furthermore, how can the impacts of weight, activation, optimizer sharding, prefetch-
ing, or distributed training be precisely measured? In this section, we demonstrate how TorCHSIM
addresses these challenges.

We show how Memory Simulator tracks tensor liveness in § 4.3.1 and then explain how it achieves
memory attribution and categorization in § 4.3.2. We then deep-dive into the design and implemen-
tation of Memory Simulator by introducing the fundamental data structures Memory Simulator
uses to maintain statistics in § 4.3.3, followed by elaboration of Memory Simulator’s execution flow

in §4.3.4.
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431 TRACKING TENSOR LIVENESS USING TORCHDISPATCHMODE AND WEAKREFS

While FakeTensors allow computation and size estimation without actual data, it does not provide
liveness information essential for accurately determining real-time memory usage. Tensors are dy-
namically created throughout the workflow, explicitly by users (e.g., model initialization), by opera-
tions (e.g., matrix multiplication), or implicitly by PyTorch’s Autograd engine (e.g., gradients).
Prior to execution, TORCHSIM extracts metadata for model parameters, optimizer states, and
input tensors. During execution, TorchDispatchMode robustly intercepts each operation dispatched
under its context, retrieving metadata of resulting tensors to track dynamic tensor creations.
Instead of tracking tensor references directly, we monitor references to their underlying storage
objects (UntypedStorage), as tensors sharing data also share storage objects. To avoid interfering
with garbage collection, we utilize WeakRef (weak references) Yang (2022); pyt (2025b), allowing
storage objects to be collected once no longer in use. WeakRef also provides callback capabilities,

triggering upon object finalization, enabling precise tracking of memory release and tensor liveness.

43.2 MEMORY ATTRIBUTION AND CATEGORIZATION USING MODULE, TENSOR, AND Op-

TIMIZER HOOKS

While TorcHSIM is now able to accurately track memory size, which is enough for estimating the
. , . . .
peak memory consumption, we haven’t attributed the sources of memory consumption. For in-
stance, if a tensor was created, which module created it? To enable memory attribution, we need
a couple of features (1) Which modules are active during the execution of an operation? (2) Are
we in the backward or forward phase of execution? This essentially boils down to tracking module
execution. To track module execution and liveness, we install global module hooks on any module
that is executed under TORCHSIM’s context. A hook is a callback function attached to a specific

point in a program’s execution flow, allowing custom code to be executed Desmaison (2021a,b);
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aut (2025). In particular, we register pre_fw_hook to track the beginning and post_fw_hook to track
the end of the module’s forward pass. While PyTorch does provide backward hooks, they are tricky
to use since they don’t work well for zn-place operations and introduce additional view operations
not present in the original execution flow. To circumnavigate this, in the module’s pre_fw_hook ,

we install a multi_grad_hook on all of the input tensors of the module that require a gradient, this
acts as a post_bw_hook for the module. Similarly, in the module’s posz_fw_hook we install another
multi_grad_hook on the output tensors of the module, that acts as a pre_bw_hook . Finally, to cap-
ture the execution of Optimizer, we install opz_step_pre_hook and opt_step_post_hook , which cap-
ture the phase where the module’s parameters are updated using gradients and optimizer states, by
setting the flag in_optimizer.

Subsequent to memory attribution, the final frontier for TORCHSIM is memory categorization,
which answers questions like, how much activation memory did a module create in the forward
pass? Part of memory categorization, especially categorizing tensors as parameters, can be done by
enumerating over the parameters of the module in the pre_fw_hook . During this phase, we also
install post_accumulate_grad_hook on the parameters to track their gradients, after they are accu-
mulated in the grad attribute of the parameter. All the other tensors generated during the forward
pass and retained for the backward pass are categorized as activations, while tensors generated dur-
ing the backward pass are categorized as temporary memory. To track if we are in backward pass,
we query PyTorch Autograd’s engine for a non-negative task_graph_id. There is one catch, though,
during activation checkpointing, the activation tensors are generated in backward. So, how do we
mark them as activations? The good news is that the module’s pre_fw_hook and post_fw_hook are
called while recomputing the activation tensors in the backward; we make use of this to correctly

categorize those tensors as activations in the backward pass.
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Figure 4.4: Memory Simulator’s data structures and functions for estimating, tracking, attributing and categorizing
memory usage

433 MEMORY SIMULATOR DATA STRUCTURES AND VARIABLES

Memory Simulator uses the following data structures to keep track to memory statistics, module
states, tensor and module liveness information, tensor categories, and program states. These are

depicted in Figure 4.4.

1. ModuleTracker: It is responsible for installing the global pre_fw_hook and post_fw_hook to
track the module execution. It maintains a set of active_modules for tracking the currently active

modules and a flag zn_backward to track if we are in the backward phase of execution.

2. RefType: Enumeration of tensor memory categories, that are, parameter, buffer, activation, gra-
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DistModuleState DistRefType

-BEFORE_PRE_FW -BEFORE_PRE_BW -UNSHARDED_PARAM -SHARDED_PARAM
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-PRE_AC -AFTER_POST_BW

Figure 4.5: Extending RefTypes and ModuleStates for distributed training

dient, temporary, input, optimize state, or other (user-defined type).

3. Snapshot: Snapshot captures the state of memory (occupancy and categorical breakdown) per
device. It is a two-level dictionary with device as the first-level key and a dictionary as the value.
The second-level dictionary is keyed by RefType with its value being the amount of memory

consumed by each category, essentially the memory breakdown.

4. ModuleState: We capture eight module states at different points during the lifetime of its exe-
cution, namely, before and after forward, before and after backward, before and after activation

checkpointing, and peak memory state during forward and backward.

S. ModuleStats: It is a two level dictionary that stores the Snapshots for all the modules at each

ModuleState.

6. Storagelnfo: This is the primary accounting data structure for storing the metadata of the inter-
cepted tensor’s UntypedStorage. It preserves the RefType, size, device, and the WeakRef to the

original UntypedStorage object.

7. Variables:

(a) in_AC: A flag that determines if we are in the activation checkpointing region.
(b) 7n_optimizer: A flag that determines if we are in the optimizer step region.
(c) current_snapshot: Captures and maintains the state of memory at any given point in time.

(d) peak_snapshot: Captures the peak memory state across the training execution.
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(e) WeakStorageDict: A weak-key dictionary to store references to all the UntypedStorage ob-

jects alive at any given point in time.

8. register_modules_and_optimizer: Registers the module’s parameter and buffer storages and
installs post_accumulate_grad_hook on them. And globally registers opt_step_pre_hook and

opt_step_post_hook for tracking optimizer states.

To extend Memory Simulator’s functionality to distributed training workflows, we need to cap-
ture additional ModuleStates, RefTypes. For instance, PyTorch’s FSDP Zhao et al. (2023) imple-
mentation internally uses pre_fw_hook and pre_bw_hook for unsharding the parameters using
all_gather for forward pass computation and gradient computation in the backward pass, respec-
tively. And uses the post_fw_hook and post_bw_hook to reshard the parameters after the forward
computation and gradient computation in the backward pass. Additionally, the gradients are ag-
gregated and sharded in the post_bw_hook as well by using reduce_scatter operation. Similarly, to
capture the state before and after the unsharding and sharding of the parameters and gradients,
Memory Simulator extends the RefTypes and ModuleStates (shown in Figure 4.5) to enable more

fine-grained statistics and enrich the estimation and debugging insights.

4.3.4 DETAILED MEMORY SIMULATOR EXECUTION

We first describe the functionality of Memory Simulator’s core functions as shown in Figures 4.6a

and 4.6b:

* Module Hooks: In addition to tracking the module execution and liveness as explained in § 4.3.2,
the module hooks serve to capture and initialize Snapshots for each ModuleState. Specifically, for
pre_fw_hook and post_fw_hook , depending on whether they are called during forward pass or acti-

vation checkpointing in the backward pass, Snapshots are stored for appropriate ModuleStates.
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* track_tensor: For a given tensor ¢ and ref” type, it first extracts its storage s¢. If st is already being
tracked and if its size (due to resize operation) or categorization (due to book trigger) has changed,
then its statistics are updated. If it is a new storage to be tracked then a WeakRef is created and a
delete_callback is registered. A new Storagelnfo object is created and its statistics are populated and

tracked in WeakStorageDict.

* update peak_stats: Each time the current snapshot is updated, either due to new tensor creation,
deletion, or change in its size, the peak statistics of Memory Simulator need to be updated. If the to-

tal memory accounted by current_snapshot exceeds the peak_snapshot, then it is updated to current.

The central execution flow of Memory Simulator is depicted in Figure 4.6¢. First, PyTorch’s
execution engine calls the registered module books at the start and end of each operation. Just be-
fore the operation is dispatched, we intercept it by overriding the forch.__dispatch__ method of
TorchDispatchMode. We execute the operation by dispatching the operator with its arguments and
obtaining the result. Then, we first check if we are in the optimizer, forward, backward or activa-
tion checkpointing region by querying the in_optimizer, in_backward and in_AC flags respectively
and set the correct ref type and module_state. For each tensor produced in the result, we call the
track_tensor function with the set 7ef_ type. Finally, we call the update peak_stats function with the

set module state.

4.4 TorcHSIM COMPUTE TIME ESTIMATION MODELS

In this section, we present a comprehensive modeling framework that predicts the runtime of Py-
Torch neural network operators.”
Modeling Methodology. Our predictors model a wide range of operator configurations and

runtime behaviors across NVIDIA A100s and H100s and require minimal fine-tuning, limited

*Operator runtime refers to the runtime of the kernel dispatched to compute the operator.
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Figure 4.7: The Runtimes for Different Operator Categories
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domain expertise, and no hardware profiling. For example, for scaled dot-product attention (sdpa),
we vary batch sizes, sequence and target lengths, query, key, and value dimensions; if there is a causal
mask; and backends (cudnn, efficient, and flash).

Neural Network Operator Categories. Pytorch consists of nearly 2000 neural network oper-
ators. Instead of modeling each operator independently, we observe that we can classify them into
three categories based on their performance characteristics. Within each class, operators have sim-
ilar runtime properties, so they can be modeled in the same way. We describe each category and its
respective model in detail, along with examples.

Category One: Elementwise Operators. Elementwise operators perform a single computation
for each element in the input, e.g., adding two arrays or multiplying two arrays; the performance
of elementwise operators is dominated by data movement. As shown in Figure 4.7a, when plotting
their runtimes on a log-log scale against the combined input and output sizes, our intuition suggests
that the performance can be modeled in three segments. In the first segment, the data size is below
the L2 cache capacity of the GPU, so the runtime remains nearly constant. In the second segment,
data movement starts saturating memory bandwidth as the data transitions from L2 cache to main
memory. In the third segment, the log-log slope approaches one, implying that the runtime scales

linearly in the original domain. We formalize this intuition as

exp(a1 + b log(x)), ifx < Kj,

T(x) = exp(az + by log(x)), ifK; <=x < Ko,

exp(a3 + log(x)), ifx > K>,

with continuity constraints that enforce smooth transitions:

a) — a + bl IOgKl - bz lOgKl and a3 = ap + bz IOng - IOng.
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For example, operators in this group include ReLU, cosine, and sine.

Category Two: Reduction Operators. Unlike elementwise operators, reduction operators per-
form several passes over the data, so they operate in parallel across multiple GPU cores; examples
include sum, mean, min, max, and softmax. As shown in Figure 7b, their runtime is affected by par-
allelism and stride, such as the dimension used. These factors introduce deviations that we model
using lightweight learned predictors (a decision tree), with one model for each operator and hard-
ware combination.

Category Three: Compute-Bound Operators. Unlike memory-bound operators, whose run-
time is mainly affected by memory bandwidth and data size, compute-bound operators’ runtimes
are more hardware sensitive. In our experiments, we consider matrix multiplication (mm), batch
matrix multiplication (bmm), scaled dot-product attention (sdpa), and 2D convolution (conv2d).
For example, sdpa computes attention using matrix multiplications and softmax; although we ex-
pect multiplying two long and skinny matrices to take longer than multiplying two square matrices
with the same arithmetic intensity due to cache-friendly tiling, as shown in Figure 4.7b, it is unclear
how exactly this affects runtime. Therefore, for each operator and hardware combination, we train
a random forest using only operator-level features because they are nonparametric, capture nonlin-
ear interactions, and adapt well to different inductive biases, in that not only do the factors driving
the runtime of small configurations differ from those for larger ones, noting that we cover runtimes

from 1072 to 10° milliseconds, but also different hardware architectures can affect kernel behavior.

45 TorcHSIM COMMUNICATION TIME ESTIMATION MODELS

In this section, we present the TorRcHSIM models for predicting communication time. Our models
capture the heterogeneous link bandwidths of multi-node network topologies with both inter-node

and intra-node interconnects, as well as straggler delay.
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Figure 4.8: Insights from benchmarking inter-GPU communication
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Modeling Inter-Node and Intra-Node Bandwidth. While existing cost models, including
those used by NCCL and GenModel, use a single bandwidth measurement for modeling commu-
nication time, we empirically show that bandwidth varies as a function of data size. An example is
shown in Figure 4.8b. Furthermore, inter-node connectivity typically uses Ethernet or Infiniband,
while intra-node communication is enabled by NVLink, PCle, and other higher-speed intercon-
nects. Thus, we fit separate log-sigmoidal curves for inter-node and intra-node segments of collec-
tive communication as shown in Figure 4.8b, enabling our learned model to handle heterogeneous
topologies with different link bandwidths across the cluster.

The ground truth data for fitting the bandwidth function is collected by performing AllGather
collectives across a range of data sizes between the GPUs and nodes in the cluster. We then fit a sig-

moid curve (as shown in Figure 4.8b) to the intra-node and inter-node measurements separately:

L
" 1+ exp(—& - (log(D +1) — Dy))

g'{C,T} (D) + b (41)

where D is the data size. The bandwidth functions (¢, 7y are thus sigmoidal with data size on the
log scale, where o denotes intra-node curve and o7 denotes inter-node curve.

Since we use B(Dy) in the denominator of the time equation in the AllReduce model in the next
section, in order to avoid undesirable discontinuities for positive Ds, we constrain the parameters in
the following way:

be (—oo,—1] L,k,Dy€ (—00,00). (4.2)

Modeling Communication Time. Given the bandwidth model, we can now create a topology-
aware and algorithm-aware analytical cost model for communication collectives. We provide models
for three commonly-used collectives in distributed training: AllReduce, AllGather, and ReduceScat-
ter.

The key technical insight behind these closed-form cost models is that NCCL uses two difter-
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Table 4.4: List of Symbols for Communication Modeling

Symbol Description

N Number of processors

S Data size per processor

P Total number of processes

Br(S)  Inter-node bandwidth as a function of data size
Bc(S)  Intra-node bandwidth as a function of data size
Ly Inter-node latency

le Intra-node latency

14 Total latency

Table 4.5: Analytical Cost Models for Collective Communication Algorithms

Collective Analytical Model
25 n 25
AllReduce Br(Ds) = Bc(Ds)

Jr(Uogz(]\f)J +1)-lr+ (P/IN—1)-L¢
(P-N-1)-S (N—-1)-S
AllGather (P—N)BoS) | NB(S)
+N-lr+ (P/N—1) - Lc
(P-N-1)-§ (N—1)-8
ReduceScatter (P — N) Bc(S) N B(S)
+N-lr+ (P/IN—1)-Lc
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ent algorithms to execute collectives: a chain or a double binary (or two-tree) tree. NCCL uses the
double binary tree for inter-node segments of the AllReduce operation and the chain for intra-
node segments of AllReduce. The chain is used for all parts of the AllGather and ReduceScatter
algorithms.

The analytical cost models are derived by counting the number of reduction and assignment
operations performed across ranks on the same node and between nodes for each collective. The
cost model expressions are shown in Table 4.5.

We now show a detailed derivation of the analytical cost models. For some operation over S ele-

ments with / links of bandwidth B(D), the time of the operation is

where Dg is the data size for an array of S elements.

ALLREDUCE. An AllReduce operation over 7 ranks requires » — 1 additions and 7 assignments.
Each of these addition/assignments steps requires a data transfer between two different ranks, except
for the first assignment since the rank of the first assignment already performed the last addition
and thus already has the complete summation. Therefore, the total communication time for an
AlIR educe operation is

2n—1)-8

FAlIR educe (S) = E;IZB(Z)S) (4.4)

where B(Ds) is the bandwidth function.

We can also decompose the AllReduce time into inter-node communication time (#7) and intra-
node communication time (z¢). Separating these two terms allows us to model each communication
time using its own bandwidth function.

Suppose our topology consists of 2 GPUs evenly distributed across N nodes. Thus, the inter-
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node communication is performed over /N ranks with N—1 links of bandwidth (since there are N—1
edges in each binary tree), whereas the intra-node communication is performed over P — (N — 1)
ranks with N(P/N — 1) = P — Nlinks of bandwidth (since each intra-node chain has P/N — 1

links). Then, the communication times are

~aN-1)-S  2s
) = (N 1) Be(Dy) ~ BDy) (45)
() 2PN S 28 )

(P—N)-Bc(Ds) ~ Be(Ds)

Thus, the sum of the inter-node communication time and the intra-node communication times

are
28 28
tr(S) + tc(S) = + 4.7
The total AllReduce time is thus the summation above, plus the communication latency /.
tAllReduce(S) = tT(S) + tC(S) +/ (48)

where

£ = ([logy(N)] +1) - br+ (P/N—1) - £

{1 is the inter-node latency and £¢ is the intra-node latency.

The logarithmic term of the startup latency follows from the height of the binary tree for inter-
node communication, while the linear term follows from the number of links in the chain for intra-
node communication.

The models above account for both inter-node and intra-node communication. In the case of 2D
parallelism, when there is only inter-node communication, we simply only include the intra-node

terms of the analytical model to predict the communication time.
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ALLGATHER AND REDUCESCATTER.  The AllGather and ReduceScatter operation can be thought
of as simply the assignment and addition portions of the AllReduce model, respectively. However,
all other NCCL operations other than AllReduce use chains, rather than trees, to connect nodes.
Thus, we have the following analytical models for these two collectives:

(P—-N-1)-§ (N-1)-§

tREdmeSmtter(S) = (P — N) BC(S) + N Bx (S) + £ (49)

where
¢ = N - inter-node latency + (P/N — 1) - intra-node latency.
and
(P—N-1)-§ (N-1)-§
ather = l 4.10
tAZZG the (P—N)BC(S) + NBR(S) + ( )
where

¢ = N - inter-node latency + (P/N — 1) - intra-node latency.

As with AllReduce, the intra-node terms of the cost models above are omitted when considering
2D, inter-node only parallelism.

Modeling Variability in Minimum Completion Time. While the analytical models account
for inter-node and intra-node communication, we consider them as explaining the minimum time
required for a communication collective to complete. However, it is important that a predictive
model capture any straggler delay, not just a lower bound on the communication time. Further-
more, there is still variability in the minimum completion time of the communication algorithm
across ranks that can be explained by the world size and data size, but is not yet captured by the ana-
lytical model.

To address this, we turn to a statistical approach to modeling collective communication time and

straggler delay. We first use the following linear model to predict the minimum communication

100



time across ranks for each collective.

Zinin N(go +[81-t+[82~£+‘83 P
+ B, xS+pB, - (¢-S) (4.11)

s (e P) B (0-5)

where the symbols are as defined in table 4.4, the 3, terms are coefficients fitted by ordinary least-
squares regression, and # is the collective time predicted by the analytical model. The terms in which
the coefficient corresponds to the product of two variables refers to an nteraction term, which al-
lows the linear relationships between the communication time, the analytical model, and other vari-
ables in the model to be adjusted based on data size and world size.
For the small data sizes (O(10 KB)), the fitted linear model can sometimes yield negative predic-
tions. In these cases, we adopt an adaptive strategy where we fall back to the analytical model:
R tomin bmin > 0
Lopin = (4.12)
t otherwise
Modeling Straggler Delay. On top of this statistical model, we then use a second linear model to

predict the straggler delay ratio, defined as the ratio of the 75th percentile of communication time

across ranks #75 to the minimum communication time zy,.

t75/tmin ~P- log(S) (4’13)
After fitting these models on collective communication benchmarking data taken at a variety of

data sizes and world sizes, we can then derive a statistical estimate of the straggler-included commu-

R S
nication time as Zin * 75/ fmin-
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Layering these analytical and statistical techniques enables our communication models to pre-
dict collective latency at high precision across data sizes and world sizes, estimating communica-
tion time within an RMSE of 3 ms across collectives and 1D/2D parallelism on two clusters, and
achieving up to a 6.8 X improvement over GenModel for predicting 2D AllReduce.

Adaptability to heterogeneous clusters. The proposed communication models account for
network topologies with heterogeneous link bandwidths by separately considering inter-node and
intra-node bandwidths and steps in the algorithms used for collective communication. This for-
mulation assumes a two-tier topology, with slower inter-node bandwidths and faster intra-node
bandwidths, and collective algorithms that operate over such topologies. However, this model is
easily extensible to topologies with three or more types of interconnects and collective algorithms
that communicate over such topologies by fitting additional nonlinear functions to their band-
widths to the respective benchmarking data, adding corresponding terms to the analytical models,
and re-fitting the statistical models. Thus, our approach provides an easily-adaptable framework for
modeling collective communication time.

Extensibility to unseen clusters. If an already-fitted communication model needs to be re-
deployed to a different, unseen cluster, one of two approaches can be taken for adapting the existing
model for a new communication time estimation. If the cluster provider is able to re-benchmark
the bandwidth and collective communication times offline, then adaptability is simply a matter of
re-fitting the bandwidth and statistical collective models. If benchmarking data is entirely or par-
tially unavailable, we propose an online learning approach to adjusting the models with data while
training a model with a distributed parallelism strategy.

Suppose the weights of the regression model are initialized to . During a training run on cluster
with N nodes and P GPUs, communication collective times y can be recorded. We can then com-

pute new weights {3/ as follows:
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B=B—7B-x—y) (4.14)

for known parameters x = (N, P, S, Ds) as defined above and learning rate 7.
As the weights § are updated, the communication model adapt to the properties of the new clus-

ter without a full offline benchmark.

4.6 TorcHSIM RUNTIME SIMULATOR

We now explain how the Runtime Simulator estimates the end-to-end runtime by emulating the
multi-stream GPU execution on the captured simulation metadata. Table 4.2 outlines the Queue
and Runtime Simulator class definitions. We describe the algorithms for Queue management in

§ 4.6.1, followed by the Simulation loop in § 4.6.2.

4.6.1 QUEUE STATE MANAGEMENT AND RESOURCE ALLOCATION

Algorithm 1 prepares each CUDA stream queue for simulation by setting up its initial state and
synchronization conditions. It iterates over all queues and checks for any synchronization events
registered under the special key -1, which represents pre-operation dependencies. Depending on
the type of synchronization action—such as stream, event, work, or global synchronize wait—it
adds the corresponding condition to the queue’s wait set. Finally, it sets the state of the queue to
WAITING, indicating that it is blocked until its dependencies are resolved.
Algorithm 2 identifies queues that are currently in the WAITING state but have no remaining

synchronization conditions and updates their state to READY. This ensures that queues are able to
proceed with execution as soon as all their dependencies have been cleared, which is a key part of

dynamic dependency resolution in the simulator.
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Algorithm 1 Initialize Queue States

Require: None.
Ensure: Every queue is initialized with proper waiting conditions.
1: for all each queue Qin streamid_to_queue do
2 if Q.sync_infos contains entries under key -1 then
3 for all each sync event syncInfoin Q.sync_infos[-1] do
4: if syncInfo.sync_action is STREAM_WAIT then
5 Add entry with key (STREAM_WAIT, syncInfo.release_seq_id) to
Q.wait_sync_infos.
else if syncInfo.sync_actionis EVENT_WAIT then
Add entry with key (EVENT_WAIT, syncInfo.release_event_id) to
Q.wait_sync_infos.
else if syncInfo.sync_action is WORK_WAIT then
Add entry with key (WORK_WAIT, syncInfo.release_seq_id) to
Q.wait_sync_infos.

N

10: else if syncInfo.sync_action is SYNCHRONIZE_WAIT then

11: Add entry with key (SYNCHRONIZE_WAIT, syncInfo.sync_id) to
Q.wait_sync_infos.

12: else

13: raise error “Unknown sync action with key -1”.

14: end if

15: end for

16: end if

17: SetQ.state <— WAITING.

18: end for

Algorithm 2 _maybe_resolve_waiting_queues

Ensure: Mark each queue as READY if it is WAITING and has no pending wait conditions.
1: for all each queue Qin streamid_to_queue do

2: if Q. state isWAITING and Q.wait_sync_infos is empty then
3: Set Q.state <— READY.

4: end if

s: end for
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Algorithm 3 simulates global synchronization mechanisms by incrementally releasing queues
that are blocked on a global synchronize event. It continues to iterate while all queues are in the
WAITING state, increasing a global synchronization counter each round. For each queue, it removes
any pending synchronization condition that matches the current round’s global sync identifier.
When a queue has no remaining synchronization dependencies, it is marked as READY. The algo-
rithm guarantees forward progress and avoids deadlock by asserting that at least one sync condition

must be cleared in each round.

Algorithm 3 _maybe_resolve_global_sync

Ensure: Resolve global synchronization waits until at least one queue is READY.
1: while all queues in streamid_to_queue are in WAITING state do

2: Increment global counter simulate_sync_count.
3 for all each queue Q in streamid_to_queue do
4 Let key <— (SYNCHRONIZE_WAIT, simulate_sync_count).
5 if Q.wait_sync_infos contains key then
6: Remove key from Q.wait_sync_infos.
7 if Q.wait_sync_infos is now empty then
8 Set Q.state < READY.
9: end if
10: else
11: assert that a sync condition exists (else, deadlock).
12: end if
13: end for

14: end while

Algorithm 4 checks whether all queues have completed their work. A queue is considered com-
plete if it is in the READY state, has no remaining operations, and no pending or unresolved synchro-
nization events. If all queues meet these criteria, the function returns True; otherwise, it returns
False. This serves as the termination condition for the simulation loop.

Algorithm S performs resource scheduling by allocating available hardware resources to oper-

ations in READY queues. It filters the list of queues to only those that are READY and have pending
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Algorithm 4 Check All Queues Completed

Ensure: Return True if every queue is COMPLETE.
1: for all each queue Qin streamid_to_queue do
2: if Q.state is READY and Q. ops is empty and both Q. sync_infos and
Q.wait_sync_infos are empty then
3 SetQ.state <— COMPLETE.
4 end if
s: end for
6: return True if every queue in streamid_to_queue has state COMPLETE; otherwise, False.

operations. After sorting them by priority and sequence ID, it checks if the operation’s required re-
sources are available. If they are, it assigns those resources, marks the queue as RUNNING, and updates
the resource occupancy table. This ensures fair and efficient use of limited compute and communi-

cation resources across multiple queues.

Algorithm 5 Allocate Resources

Ensure: Allocate available resources to operations in READY queues.
1: Identity all queues in state READY with pending operations; denote as Q_ready.

2: assert: Each queue in Q_ready has at least one op.

3: Sort Q_ready by (priority, sequence ID of the first op).

4: for all each queue Qin Q_ready do

5: Let op  first element in Q. ops.

6: if any resource in op.resources is already occupied (exists in

_resource_occupancy) then
7: continue to next queue.
8: end if
for all each resource in op.resources do

10: Update _resource_occupancy to map the resource to Q.
11: end for
12 Set Q.state <— RUNNING.
13: end for
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Figure 4.9: TorchSim Runtime Simulator in action.

4.6.2 SiMULATION LooP

The main simulation loop, outlined in Algorithm 6, advances simulated time and models the exe-
cution of all queues until every queue is marked as COMPLETE. At each iteration, it determines the
minimum remaining execution time among all head operations, advances time by that amount, and
updates queue states and resource allocations accordingly. When an operation finishes, it is removed
from the queue, its resources are released, and relevant synchronization events are processed. The
loop also invokes helper functions to resolve synchronization and queue readiness. The total simu-
lated time is returned at the end. Figure 4.9 illustrates the runtime simulator in action.

Table 4.6 presents the algorithm for processing the synchronization events. It handles all syn-
chronization events associated with a completed operation. Depending on the event type, such as
event release/wait, stream release/wait, work release/wait, or global synchronize wait, it updates the
global state or other queues’ wait conditions accordingly. For release events, it notifies dependent
queues so they can proceed; for wait events, it adds new dependencies if the required condition is
not yet satisfied. This enables correct modeling of inter-operation dependencies and synchroniza-

tion across streams.
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Algorithm 6 Simulate

Ensure: Total simulated time T_sim.
1: // Pre-check: Verify that all waited events are recorded.

2: Initialize simulation time: T_sim < 0.
3: Initialize simulation state:
4 _resource_occupancy <— empty,
5: _completed_ops <— empty set,
6 _recorded_events ¢ empty set.
7: Call Initialize Queue States to set all queues to WAITING.
8: while not all queues are COMPLETE do
9 Call Allocate Resources to mark READY queues as RUNNING.
10: Let resource_independent_queues be the set of queues currently occupying
resources.
11: Let head_ops be the first operation from each queue in
resource_independent_queues.
12: Determine min_rem_time as the minimum op.rem_time among head_ops.
13: SetDelta_t < min_rem_time.
14: Update simulation time: T_sim <— T_sim + Delta_t.
15: for all each head operation op in head_ops do
16: Decrease op.rem_time by Delta_t.
17: if op.rem_time equals O then
18: Let Q be the queue corresponding to op.stream_id.
19: Remove op from Q. ops.
20: Set Q.state < READY.
21: for all each resource in op.resources do
22: Remove the resource from _resource_occupancy.
23: end for
24: Add op.seq_id to global set _completed_ops.
25: Call Process_Sync_Events with Q and op.
26: end if
27: end for
28: Call _maybe_resolve_waiting_queues().
29: Call _maybe_resolve_global_sync().

30: end while
31: return T_sim.
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SyncAction Simulator Action

EVENT_RELEASE Add syncInfo.release_event_id to recorded_events
For each queueQ’ in streamid_to_queue:
If Q' .state is WAITING and
Q' .wait_sync_infos contains key
(EVENT_WAIT, syncInfo.release_event_id),
remove that key.

EVENT_WAIT If syncInfo.release_event_id g_f recorded_events:
Add key (EVENT_WAIT, release_event_id)

to Q.wait_sync_infos
SetQ.state to WAITING.

STREAM_RELEASE For each queue Q' in streamid_to_queue:

If Q' .state is WAITING and

Q' .wait_sync_infos contains key
(STREAM_WAIT, syncInfo.release_seq_id),
remove that key.

STREAM_WAIT If syncInfo.release_seq_id §§ completed_ops:
Add key (STREAM_WAIT, release_seq_id)

to Q.wait_sync_infos
Set Q.state to WAITING.

WORK_RELEASE For each queueQ’ in streamid_to_queue:

If Q' .state is WAITING and

Q' .wait_sync_infos contains key
(WORK_WAIT, release_seq_id),
remove that key.

WORK_WAIT If syncInfo.release_seq_id gé completed_ops:
Add key (WORK_WAIT, release_seq_id)

to Q.wait_sync_infos
SetQ.state to WAITING.

SYNC_WAIT Add key (SYNC_WAIT, sync_id) to Q.wait_sync_infos
Set Q.state to WAITING.

Table 4.6: Process_Sync_Events for a given syncInfo and Q
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TRAIN TEsT

OPERATOR RMSE (Ms) MAPE (%) ACC %) RMSE Ms) MAPE (%) ACC (%)
MM 0.17 1.25 99.7 0.44 2.8 95.7
BMM 1.07 1.47 99.32 2.62 3.3 94.1
SDPA 1.31 0.65 99.8 2.58 1.77 97.5
SDPA BACKWARD 2.41 0.8 99.7 5.90 213 96.9
CONV2D 12.89 4.20 92.9 40.3 11.2 81.0
CONV2D BACKWARD 48.68 4.08 92.5 125.5 10.96 74.8

Table 4.7: Regression and Accuracy Results for the Learned Compute-Bound Model on H100s

TrRAIN TEsT
OPERATOR RMSE (ms) MAPE (%) Accuracy (%) RMSE (mMs) MAPE (%) ACCURACY (%)
MM 0.27 1.2 99.7 0.71 2.51 97.7
BMM 0.53 0.9 99.5 1.34 1.76 98.1
SDPA 1.72 0.76 99.6 3.81 2.1 96.6
SDPA BACKWARD 3.64 1.25 99.3 9.64 3.32 93.5
CONV2D 28.5 4.93 89.93 52.02 9.46 77.5
CONV2D BACKWARD 105 5.33 88.73 187.6 10.5 74.6

Table 4.8: Regression and Accuracy Results for the Learned Model on A100s.

4.7 EXPERIMENTAL RESULTS

471 CoMrPUTE TIME PREDICTION

This section describes how we fitted the learned models for predicting operator runtime using
benchmarking data collected for NVIDIA A100s and H100s. We ran two warmup iterations for
each operator configuration, and took the median runtime of five iterations. To evaluate our mod-
els’ performances, we reserve 15% of each dataset as the test set to get root mean squared error (RMSE),
mean absolute percentage error (MAPE), and £10% accuracy.

As shown in Table 4.7 and Table 4.8, we find that our models have good test evaluation results.

In Figures 4.10 and 4.11, we see that most of the differences between predicted time and mea-
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Figure 4.10: The predicted runtime plotted against the measured runtime for the operators on NVIDIA A100s. The red
line denotes the line y = x. We binned measured runtimes and took a mean per bin.
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Figure 4.11: The predicted runtime plotted against the measured runtime for the operators on NVIDIA H100s. The red
line denotes the line y = x. We binned measured runtimes and took a mean per bin.
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sured time happen when the measured time is large. This implies that our learned model can predict
the runtime of the operators with low RMSE and MAPE and high accuracy, with only access to

operator-level features.

47.2 COMMUNICATION TIME PREDICTION

The analytical and statistical models for predicting collective communiation time were fitted and
evaluated with benchmarking data collected on cluster X, with NVIDIA H100 GPUs arranged
with 4 GPUs per server connected by Infiniband interconnects, and cluster Y, with H100 GPUs
with 8 GPUs per server and RoCE support. We benchmarked the AllReduce, AllGather, and Re-
duceScatter collectives on a series of world sizes ranging from 4 to 32 nodes (16 to 128 GPUs) on
cluster X and from 4 to 64 nodes (32 to 512 GPUs) on cluster Y, and data sizes ranging from 15KB
to 4GB. The benchmarking experiment for each data size and world size was run 10 times, after a
small number of warmup iterations. Furthermore, we benchmarked each collective in two settings:
inter-node and intra-node communication (1D parallelism) and inter-node only communication
(2D parallelism). Including both settings in a predictive model for communication time is relevant
for ensuring that our models are performant in both DP-only (1D) configurations and in setups
where both DP and TP are used along different dimensions of the topology.

For comparison, we use the GenModel communication model as a baseline for AllR educe la-
tency predictions in 2D parallelism settings. Since the co-located PS benchmarking toolkit used to
fit GenModel is not publically available, we approximate the model by using the Recursive Halving-
Doubling formula for inter-node only AllReduce, with the learned constants «, 3, y, d in the ex-
pression fitted with least-squares regression. We demonstrate that, for predicting AllReduce in 2D
parallelism settings, our model demonstrates up to 6x of improvement in RMSE for predicting
collective latency compared to GenModel. A full table of model performance statistics is shown in

Table 4.9.
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Figure 4.12: 75th percentile AllReduce communication time from benchmarking data and predictions by the collective
communication prediction model for each data size on cluster X. (a)-(c) show data from world sizes of N = 16, 64,128
for 1D parallelism whereas (d) shows data for 2D parallelism for N = 64.
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Figure 4.13: 75th percentile AllGather communication time from benchmarking data and predictions by the collective
communication prediction model for each data size on cluster X. Data size refers to the size of the output tensor in the
AllGather operation, since the communication overhead scales with the output dimensions. (a)-(c) show data from world
sizes of N = 16, 64, 128 for 1D parallelism whereas (d) shows data for 2D parallelism for N = 64.
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lective communication prediction model for each data size on cluster X, with the same log-linear scale as Figure 4.12.
(a)-(c) show data from world sizes of N = 16, 64, 128 for 1D parallelism whereas (d) shows data for 2D parallelism for

N = 64.
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Figure 4.15: 75th percentile AllReduce collective times on cluster X with predictions by the statistical communication
model and the GenModel baseline predictions for 2D parallelism on N = 16, 64,128 GPUs.

Figures 4.12, 4.13, and 4.14 demonstrate the performance of the statistical model in predicting
AllReduce, AllGather, and ReduceScatter communication time, respectively, on cluster X. With
small data sizes (S < 256 MB) on the logarithmic scale, we can see that the linear model fits equally
well in the non-linear regions of the time-size curve as in the linear regions where data sizes are larger.
It is important to note that we only need to fit the communication time and straggler delay ratio
models once for each collective; in other words, the model is able to explain the variability in com-
munication time across data sizes and world sizes, thanks to the use of the log-sigmoid bandwidth
function, the topology-aware nature of the analytical model and the interaction terms of the learned
statistical model.

Figure 4.15 visually compares our proposed statistical model and GenModel’s performance at
predicting AlIR educe communication times in inter-node only communication for 16, 64, and 128
GPUs on cluster X. Not only does GenModel fail to capture the non-linearities in AllReduce time,
but it also systematically underestimates the collective time. By capturing straggler delay, non-linear
bandwidths, and NCCL algorithms for different topologies as well as supporting both 1D and 2D

parallelism, our learned communication models are a significant improvement over existing work.
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Table 4.9: Root Mean Squared Error (RMSE) of Collective Communication Model and GenModel on Cluster X and Y.
Baseline performance data from GenModel are shown for AllReduce in 2D parallelism only using an approximation of
the Recursive Halving-Doubling model, since GenModel can only predict non-hierarchical AllReduce

‘WorLD Size (N) MopeL RMSE (Ms)  GENMobDEL RMSE (ms) IMPROVEMENT
CLUSTER X
ALLREDUCE (2D)
16 2.363 5.385 2.278%
64 0.756 5.162 6.825%
128 1.302 5.304 4.0725%

ALLREDUCE (ID)

16 2.374 - -
64 1.951 - -
128 0.676 - -

ALLGATHER (2D)

16 0.287 - -

64 0.692 - -

128 0.973 - -
ALLGATHER (1D)

16 0.289 - -

64 0.691 - -

128 0.969 - -

REDUCESCATTER (2D)

16 0.128 - -
64 1.203 - -
128 1.990 - -

REDUCESCATTER (1D)

16 0.130 - -
64 1.204 - -
128 1.987 - -
CLUSTER Y
ArLLREDUCE (2D)
16 0.411 1176 2.860%
64 0.277 1.234 4.460 X
128 0.633 1.782 2.814%
ALLREDUCE (ID)
16 0.246 - -
64 0.366 - -
128 0.467 - -

ALLGATHER (2D)

16 0.130 - -

64 0.266 - -

128 0.624 - -
ALLGATHER (1D)

16 0.174 - -

64 0.264 - -

128 0.626 - -

REDUCESCATTER (2D)

16 2.678 - -
64 0.525 - -
128 0.808 - -

REDUCESCATTER (1D)

16 2.680 - -
64 0.542 - -
128 0.794 - -
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4.7.3 RUNTIME SIMULATION

We now demonstrate the accuracy and speed of our tool across diverse models, training configura-

tions, model sizes, architectural features, for single and distributed workflows.

MobpEL Num. PaAraMms Num. HEaDS Heap Tyre Hippen Dim Num. LAYERS
GEMMA 2B 2.02B 8 GROUPED-QUERY ATTENTION 18432 26
TIMM ViT 632 M 16 MLP 1280 32

HF CLir 428 M 16 STANDARD SELF-ATTENTION 4096 24

Lrama V3 1B 1.24B 16 GROUPED-QUERY ATTENTION 4096 24

Table 4.10: Model configurations used in single device simulator experiments.

EXPERIMENTAL SETUP

We evaluate on 4 state-of-the-art models Google Gemma 2B Team et al. (2024), Meta Llama 3.2
1BDubey et al. (2024), Open AI CLIP Radford et al. (2021), and PyTorch-Image-Models Vision
Transformer Steiner et al. (2021); Alexey (2020) for single GPU training. We utilize Meta Llama
3.170B model for our distributed training experimentsDubey et al. (2024). We vary the batch-size,
sequence-length (for large-language models) and image-size (for vision models). For measuring ac-
tual model execution times, we run three warm-up iterations and measure five actual iterations and
use the mean value. For benchmark estimation mode for each operator, we perform 2 warm-up it-
erations and 3 actual measurement iterations and take the mean. For estimation experiments with
our learned and statistical cost-models, we just run one single iteration of training since it is execu-
tion free. All our experiments are on the latest NVDIA H100 GPUs. For distributed settings, each

machine has 4 GPUs connected with NV Links, and the 16 machines are connected via Infiniband.
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SINGLE-MODEL TRAINING

For single model training we experiment with 3 types of precisions Full Precision (FP), Mixed Pre-
cision (MP) and Half Precision (HP), to analyze the performance for different data types. We also
toggle Activation Checkpointing (AC), to evaluate the recomputation overhead. Our benchmark
model, per-form per operator execution to get the final run-time. Our Cost-Model represents the
roofline-model that is fine-tuned. Learned model is our approach. We can estimate end-to-end
model times within 30 seconds. Table 4.11 shows our results. We achieve a mean accuracy of 90%

for Learned model approach against the 76% for Roofline-model and 85% with Benchmark model.

DISTRIBUTED TRAINING

We evaluate our distributed workflow, to demonstrate the effectiveness of of our communication
models and our distributed simulator. We use Llama 3.1 70B model on 128 GPUs. Table 4.12,
shows our results for training with FSDP (1D Fully Sharded Data Parallel) training and Table 4.13

shows our results while applying FSDP+TP (2D Fully Sharded and Tensor Parallel) parallelism.

4.7.4 MEMORY SIMULATION

EXPERIMENTAL SETUP (HARDWARE, MODELS AND NETWORK)

We evaluate on 7 state-of-the-art models Google Gemma 2B Team et al. (2024), Meta Llama 3.2
1BDubey et al. (2024), Open AI CLIP Radford et al. (2021), Google TS Raffel et al. (2020b), Open
AT GPT Achiam et al. (2023). PyTorch-Image-Models Vision Transformer Alexey (2020) and Con-
vNextV2 Steiner et al. (2021) for single GPU training memory estimation . We utilize Meta Llama
3.170B model for our distributed training memory estimation experimentsDubey et al. (2024). We

vary the batch-size, sequence-length (for large-language models) and image-size (for vision models).
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Table 4.11: Runtime Simulator Accuracy Across Cost Models for Configurations of Deep Learning Models

Barcu SEQ LENGTH ACTIVATION Accuracy
PRECISION - EsTIMATION TYPE PREDICTED (MS)  PREDICTION TIME (MS)  ACTUAL (MS)
S1ZE MG S1ZE CHECKPOINTING (ACTUAL / PRED)
GEMMA 2B
2 4096 HP TRUE BENCHMARK 460.41 6481.63 424.03 0.92
2 4096 HP TRUE ROOFLINE MODEL 315.87 1342.92 424.03 1.34
2 4096 HP TRUE LEARNED 426.36 7218.43 424.03 0.99
4 2048 HP TRUE BENCHMARK 442.71 6372.82 407.84 0.92
4 2048 HP TRUE ROOFLINE MODEL 312.85 1359.28 407.84 1.30
4 2048 HP TRUE LEARNED 409.33 7336.92 407.84 1.00
4 1024 P TRUE BENCHMARK 1648.08 13001.56 1605.04 0.97
4 1024 P TRUE ROOFLINE MODEL 1068.72 1306.18 1605.04 1.50
4 1024 P TRUE LEARNED 1579.44 7117.60 1605.04 1.02
8 1024 HP FaLsE BENCHMARK 390.49 5631.34 356.99 0.91
8 1024 HP FaLsE ROOFLINE MODEL 214.02 2426.29 356.99 1.67
8 1024 HP FavLse LEARNED 361.40 6970.04 356.99 0.99
Timm VIT
32 224 P FaLse BENCHMARK 831.66 8233.67 795.94 0.96
32 224 P FaLse ROOFLINE MODEL 485.11 3925.25 795.94 1.64
32 224 P FaLse LEARNED 780.23 6555.14 795.94 1.02
64 224 FP TRUE BENCHMARK 1858.68 15154.25 1820.54 0.98
64 224 P TRUE ROOFLINE MODEL 1176.45 4474.60 1820.54 155
64 224 P TRUE LEARNED 1851.27 7238.46 1820.54 0.98
128 224 HP TRUE BENCHMARK 440.07 7414.49 395.18 0.90
128 224 HP TRUE RoOOFLINE MODEL 326.36 5610.18 395.18 1.21
128 224 HP TRUE LEARNED 451.91 7221.01 395.18 0.87
256 224 HP TRUE BENCHMARK 815.67 11073.03 764.06 0.94
256 224 HP TRUE RoOFLINE MODEL 645.36 5925.16 764.06 118
256 224 HP TRUE LEARNED 885.13 7353.14 764.06 0.86
HF CLip
32 20/336 FP FavLse BENCHMARK 999.47 10050.04 936.18 0.94
32 20/336 P FavLse ROOFLINE MODEL 609.15 3659.49 936.18 1.54
32 20/336 P FaLse LEARNED 950.12 7161.46 936.18 0.99
64 20/336 FP TRUE BENCHMARK 2263.38 18999.18 2193.21 0.97
64 20/336 FP TRUE ROOFLINE MODEL 1474.87 2362.47 2193.21 1.49
64 20/336 FP TRUE LEARNED 2299.78 7894.58 2193.21 0.95
Liama
1 16384 HP TRUE BENCHMARK 649.53 7410.70 616.67 0.95
1 16384 HP TRUE ROOFLINE MODEL 371.86 1185.89 616.67 1.66
1 16384 HP TRUE LEARNED 620.61 6994.24 616.67 0.99
2 8192 HP TRUE BENCHMARK 551.96 6701.48 525.06 0.95
2 8192 HP TRUE ROOFLINE MODEL 363.62 1120.93 525.06 1.44
2 8192 HP TRUE LEARNED 513.50 7054.34 525.06 1.02
4 4096 HP TRUE BENCHMARK 498.16 6546.15 458.82 0.92
4 4096 HP TRUE ROOFLINE MODEL 353.22 1158.24 458.82 1.30
4 4096 HP TRUE LEARNED 459.63 7090.61 458.82 1.00
2048 FP TRUE BENCHMARK 3217.58 22517.67 3199.76 0.99
2048 FP TRUE RooFLINE MODEL 2206.64 1700.23 3199.76 1.45
2048 FP TRUE LEARNED 3236.30 6945.94 3199.76 0.99
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LocaL

BaTcH  SEQLEN AC EsT. AcTUAL Acc. PrED.
(MS) (MS) (EsT./AcTUuAaL) OVERHEAD (S)
S1zE
2 64 SELECTIVE 4953.20 5503.55 0.90 17.78
2 256 SELECTIVE 4934.07 5423.15 0.91 17.81
2 1024 FULL 5042.39 5480.86 0.92 18.24
1 4096 FULL 5477.02 6018.70 0.91 18.01
1 8192 FULL 9597.48 10663.87 0.90 18.10

Table 4.12: Runtime simulator accuracy for 1D FSDP across 128 GPUs for Llama 3 70B training. We achieve a mean
accuracy of 90% in predicting iteration time while incurring minimal prediction overhead (shown in the final column).

LocaL SEoLEN  AC EsT. AcTtualL Acc. PrED.
BatcH S12E Q (MS) (MS) (EsT. 7 ActUuaL) OVERHEAD (S)
8 1024 FULL 4955.56  5445.67 0.91 31.53
4 4096 FULL 5383.30 5851.41 0.92 30.37
4 8192 FULL 10075.91 11195.45 0.90 30.59

Table 4.13: Runtime simulator accuracy for 2D FSDP across 128 GPUs for Llama 3 70B training. We achieve a mean
accuracy of 91% in predicting iteration time while incurring minimal prediction overhead (shown in the final column).
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For measuring actual model memory, we run three warm-up iterations and measure five actual iter-
ations and use the max value. For estimation experiments with Memory Simulator, we just run one

single iteration of training since it is execution free. All our experiments are on the latest NVDIA

H100 GPUs.

SINGLE-GPU

For single model training we experiment with 3 types of precisions Full Precision (FP), Mixed Pre-
cision (MP) and Half Precision (HP), to analyze the performance for different data types. We also
toggle Activation Checkpointing (AC), to estimate the memory savings. Table 4.14 shows the effec-

tiveness of our approach. We get close to 100% accuracy in almost all settings.

MurTtI-GPU

We evaluate our distributed workflow, to demonstrate the effectiveness of Memory Simulator at
scale. We use Llama 3.1 70B model on 64 GPUs for FSDP configuration (1D Fully Sharded Data
Parallel) and on 128 GPUs for FSDP + TP (2D Fully Sharded Data Parallel and Tensor Parallel).
Each machine has 4 GPUs connected with NVLinks and the 16/32 machines are connected via
Infiniband. Table 4.15, shows our results for training with FSDP (1D Fully Sharded Data Parallel)
training and Table 4.16 shows our results while applying FSDP+TP (2D Fully Sharded and Tensor
Parallel) parallelism. We achieve > 99% accuracy in all cases even with complex memory manage-

ment of FSDP and TP. We use TorchTitan Liang et al. (2024) to evaluate Memory Simulator.
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Table 4.14: Memory usage estimates and actual for various models and configurations. Memory Simulator achieves
approximately 99% accuracy in all scenarios across the 7 models with different batch sizes, sequence lengths, precisions
and memory optimizations techniques like activation checkpointing.

MopeL NaME  BatcH S1ze  SEQLEN/IMAGE S1zE  PRECISION AC EsTiMATED (GIB) ActuaL(GiB) AccCURrRAcCY

8 512 MP No 59.75 59.81 0.99

4 1024 FP YEs 43.34 46.74 0.99

8 1024 HP No 66.41 66.47 0.99

GEMMA_2B 2 2048 FP YEs 43.38 46.74 0.99
2 2048 MP No 59.78 59.84 0.99

4 2048 HP Yes 44.96 45.02 0.99

2 4096 HP YEs 45.00 45.06 0.99

32 336 FP No 39.85 39.93 0.99

64 336 FP YEs 12.81 12.89 0.99

HF_CLIP 64 336 HP YEs 6.41 6.51 0.99
64 336 MP No 47.42 47.50 0.99

128 336 HP Yes 10.18 10.29 0.99

16 512 MP No 44.34 44.47 0.99

HF_GPT2 8 1024 MP No 44.34 44.48 0.99
16 1024 HP No 49.93 49.95 0.99

6 512 MP No 32.06 32.20 0.99

2 1024 FP YEs 33.70 33.75 0.99

Hr_TS 4 1024 HP No 49.08 49.14 0.99
1 2048 FP Yes 53.50 53.55 0.99

1 2048 HP Yes 38.69 38.87 0.99

1 2048 MP YEs 44.95 45.00 0.99

4 1024 FP No 33.04 33.09 0.99

4 1024 MP No 31.52 31.58 0.99

LLaMA 1B 4 2048 HP Yes 24.94 24.99 0.99
- 8 2048 FP YEs 54.60 54.63 0.99

8 2048 HP Yes 42.97 43.02 0.99

4 4096 HP YEs 42.97 43.02 0.99

2 8192 HP Yes 42.98 43.03 0.99

1 16384 HP YEs 38.56 38.61 0.99

16 224 FP No 22.70 22.98 0.99

32 224 FP YEs 14.46 14.67 0.99

32 224 MP No 27.79 28.02 0.99

CONVNEXT 64 224 HP No 33.64 33.91 0.99
64 224 MP No 46.91 47.18 0.99

128 224 FP Yes 31.45 31.54 0.99

128 224 HP YEs 15.74 15.86 0.99

256 224 HP Yes 27.38 27.51 0.99

32 224 FP No 27.45 27.65 0.99

64 224 FP Yes 11.29 12.08 0.99

TIMM VIT 64 224 HP No 23.92 24.12 0.99
- 64 224 MP No 31.29 31.59 0.99

128 224 HP YEs 7.74 7.82 0.99

256 224 HP Yes 11.94 12.00 0.99
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Table 4.15: Memory Simulator achieves > 99% accuracy with distributed 1D FSDP training and is able to get the

estimation within 30 seconds for Llama 70 billion model.

Batcu S1ize  SeQ LEN AC EsT.(GiB) ActuarL(GiB)y Acc TIME(s)
2 64 SELECTIVE 30.10 30.20 0.995 31.909
2 256 SELECTIVE 30.65 30.97 0.989 31.858
2 1024 FULL 30.50 30.70 0.995 30.360
1 4096 FULL 32.15 32.28 0.996 31.552
1 8192 FULL 40.13 40.18 0.998 31.095

Table 4.16: Memory Simulator achieves > 99% accuracy with distributed 2D FSDP+TP training and is able to get the

estimation within 30 seconds for Llama 70 billion model.

Batcu S1ize  SeEQ LEN AC EsT.(GIB) ActuaL(GiB) Acc TIME(s)
2 64 SELECTIVE 12.87 12.98 0.992 29.569
2 256 SELECTIVE 12.87 12.98 0.992 29.627
2 1024 FULL 12.88 12.98 0.992 28.423
1 4096 FULL 12.88 12.99 0.990 28.277
1 8192 FULL 13.10 14.27 0.991 28.452
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4.8 RELATED WORK

4.8.1 RUNTIME SIMULATORS

Despite the recognized importance of model training simulation, there are few studies due to its
inherent complexity Geoftrey et al. (2021); Li et al. (2023); Lee et al. (2025a). Existing approaches
do not focus on identifying and capturing the synchronization primitives that are critical for simu-
lating the diverse range of distributed training setups, which involve mixed parallel paradigms and
collective primitives. As a result, existing methods are limited to supporting only a few specific sim-
ple parallel training paradigms, namely, Gpipe PP, DDP, and ring all-reduce-based TP Lee et al.
(2025a). Moreover, their reliance on computational graphs prevents their deployment in real-world
model training, as obtaining these graphs in large-scale distributed environments remains an open
problem.

In contrast, TorcHSIM Simulator is the first simulation solution that supports all off-the-shelf
parallel paradigms and accurately models the communication-compute overlap, without relying on

computational graphs.

4.8.2 MEMORY ESTIMATION

Current real-time memory tracking tools Shi & DeVito (2023); pyt (2025a), primarily designed to
identify Out-of-Memory (OOM) errors and analyze memory usage, have significant limitations.
They collect memory profiling statistics during job execution, making the analysis inherently post-
hoc. Even if expert users identify memory inefficiencies and adjust configurations, there is no re-
liable method to estimate the precise impact on peak memory consumption or to guarantee the
absence of OOM errors.

Analytical methods for estimating peak memory Narayanan et al. (2021) ofter an alternative but
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require specialized expertise, detailed knowledge of model architectures, and familiarity with the
internal mechanics of automatic differentiation engines like Py Torch Autograd. These methods
demand understanding mathematical formulations for each operator and intricate memory alloca-
tion policies, which becomes increasingly complicated when considering algorithmic features like
prefetching, lazy initialization, dynamic resizing, and scheduling. Typically, researchers skilled in
machine learning theory and algorithms lack the complementary systems expertise necessary for
effectively utilizing these analytical techniques.

DNN-Mem Gao et al. (2020) depends on analytical formulas, rendering it impractical for main-
tenance given PyTorch’s large number of operators. It also lacks support for eager execution mode
and offers minimal support for distributed training, being limited to simple Distributed Data Paral-
lel (DDP) scenarios.

Boom Su et al. (2024) only reports peak memory consumption without offering memory cate-
gorization, attribution, or snapshot capturing. It requires source-level modifications to PyTorch for
the FakeMemoryAllocator, which despite its name, actually performs real memory allocations on a
single GPU, providing no demonstrated compatibility with distributed training scenarios.

Skyline Yu et al. (2020) categorizes memory only into weights and activations, omitting critical
categories such as activation gradients, weight gradients, and optimizer states. It lacks distributed
training results and does not accommodate loop-based workflows common in pipeline parallel train-
ing.

Approaches using TorchDispatchMode He et al. (2022) and Fake TensorMode Contributors
(2025) primarily focus on operator-level dispatch without modeling peak memory, categorizing
memory usage, or attributing memory to specific modules. Accurate and efficient tensor liveness
tracking and maintaining memory usage snapshots demand substantial additional effort, as de-
scribed in Section 4.3.

In contrast, TOoRCHSIM addresses these limitations comprehensively. It extends Py Torch by
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adding FakeTensor and FakeProcessGroup support for all communication and synchronization col-
lectives, essential for accurate simulation of distributed training algorithms. TorRCHSIM accurately
categorizes tensors generated through collectives, integrating closely with native PyTorch distributed
training techniques such as Fully Sharded Data Parallel (FSDP) and Tensor Parallel (TP). Addition-
ally, TorcHSIM provides deep integration with tensor subclasses like D7ensors, Keyed Tensor, and
JaggedTensors by appropriately flattening and unflattening tensors to access local device storage.
Furthermore, it tracks heterogeneous device usage, crucial for CPU offloading scenarios, and effec-
tively supports complex parallel strategies like Pipeline Parallel (PP), accurately reflecting variations

in peak memory consumption across different pipeline stages and schedules.

4.8.3 ComruUTE TIME PREDICTION

Existing approaches to predicting GPU operator runtime can broadly be categorized into operator-
level Justus et al. (2018) and kernel-level Geoftrey et al. (2021); Li et al. (2023); Lee et al. (2025a);
Zhang et al. (2022b); Li et al. (2022) methods. Given an Al model, operator-level methods extract
all its operators and estimate the compute time of each operator. Kernel-level methods further ex-
tract the kernels dispatched to compute each operator, and then estimate the kernel compute time.
The predicted compute time for individual operators or kernels are then aggregated to get the model
compute time.

Kernel-level predictions have demonstrated high accuracy by directly modeling hardware ex-
ecution characteristics Zhang et al. (2022b). However, identifying the kernels dispatched from
an operator and understanding the orchestration of dispatched kernels for an operator is by itself
a challenging research problem Zhang et al. (2022b); Li et al. (2022). In practice, these analyses
require unaffordable hardware-specific profiling techniques NVIDIA (2025); AMD (2025) and
reverse engineering efforts Geoffrey et al. (2021).

Operator-level predictions rely primarily on hardware-agnostic features, such as batch size and
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input dimensions, making it easier to get tested and employed in existing software. However, we
notice most existing operator-level predictions only explore a small range of input features for
single-node settings Justus et al. (2018); Zhang et al. (2022b); Lee et al. (2025a). This cannot ful-
fill the emergent demands of predicting cutting-edge AI models Tazi et al. (2025), which have input
ranges in 1 to 1e6, depending on the operator types, and compute time in le-2 to 1le5 ms. A large
range of input features and compute time not only impedes the model convergence by introduc-
ing exponentially-increased instability, but also demands dedicated model designs to capture the
expanded intricate relationships between the operators and the dispatched kernels.

In TorcHSIM, we predict at the operator level and encompass a 100x larger input space, catering
for all modern AI models. We resolve the technical challenges of increased convergence instability
and expanded mapping complexity by embedding the intuition of learning the kernel dispatching
implicitly in the choice and design of the models, namely a Random Forest model and a Mixture-of-
Experts model. For the first time, we achieve beyond 90% accuracy using the Random Forest model

for all compute-bounded operators in PyTorch on all practical input ranges.

4.8.4 COMMUNICATION TIME MODELING

The time for any data to be communicated across a link of bandwidth is typically modeled with the
standard @ — fmodel, where 2,8 € R™, 2 is the link latency, and 8 is link bandwidth Lee et al.
(2025b); Won et al. (2023); Mohammad et al. (2017). While this model yields sufficient accuracy
in predicting communication time in some applications, it falls short in multiple ways for modeling
communication in multi-GPU training settings. For instance, the #- model does not account for
the presence of straggler delay in distributed settings involving communication amongst multiple
GPUs. The model also assumes that bandwidth £ is a scalar quantity—the link bandwidth can vary
significantly between inter- and intra-node communication and, as we show in Figure 4.8b, £ for

asingle link is in fact a non-linear function of data size. Furthermore, the model does not account
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for the fact that backends such as NCCL use different algorithms for inter-node and intra-node
communication in some collectives.

Xiong et al. (2024) builds upon the 2 — 8 model for AllReduce collectives by first using the
a — [ — y model, where y represents computational cost of the collective, and adding two additional
terms, d and €, to capture memory access cost and incast, respectively. By analyzing the computa-
tional, communication, and memory access cost of different AllReduce algorithms, the proposed
learned model, GenModel, is fitted to data from a co-located Parameter Server-based benchmarking
suite as well as two additional microbenchmarks for memory access cost and full mesh communi-
cation congestion. While GenModel seeks to be topology-aware and congestion-aware like our pro-
posed models, they have multiple limitations. Firstly, the benchmarking required to fit the model
may not always be possible, given that the physical topology of a cluster may not make a Parameter
Server (PS) benchmark or full mesh communication possible. Secondly, the algorithms included
in GenModel only use a single type of algorithm such as Ring-AllR educe, Recursive Halving Dou-
bling (RHD), or Co-located Parameter Server; however, the vast majority of large GPU clusters
today use hierarchical topologies with some combination of these topologies. Finally, GenModel is
only evaluated on a PS topology involving up to 15 nodes connected to a single switch with a con-
stant network bandwidth of 10 Gbps and the MPI library backend, limiting its applicability to large
scale deployments of inter-GPU communication.

The learned communication models in our solution are a fully topology-aware, algorithm-aware
approach to modeling large-scale inter-GPU communication collectives. Our analytical cost models
isolate inter-node and intra-node bandwidths, reflecting GPU clusters with hierarchical topologies
and different interconnects between GPUs on the same and across nodes. Our models also only
require a much simpler, topology-agnostic benchmark to fit our models. We demonstrate the scal-
ability and adaprtability of our models on different clusters and across world sizes, evaluating it on

collectives between up to 128 GPUs across 32 nodes.
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4.9 FuTURE DIRECTIONS

While TorcHSIM achieves high accuracy in simulating dense, deterministic training workloads,

several promising extensions remain.

491 MOoODELING DATA-DEPENDENT COMPUTATION.

One important next step is extending TORCHSIM to support data-dependent computation, partic-
ularly in architectures such as Mixture-of-Experts (MoE) Cai et al. (2025a,b). These models dynam-
ically route inputs to different expert sub-networks, introducing variability in execution paths and
runtime. To simulate this behavior, TORCHSIM can be extended to sample expert selection patterns
from a range of distributions, such as uniform, power-law, or Zipfian, to represent varying degrees
of skew in expert activation. For each sampled configuration, runtime can be estimated indepen-
dently. Aggregated statistics such as the median or higher percentiles can then be used to report end-
to-end runtime, providing robust estimates under uncertainty without requiring full enumeration

of all possible routing decisions.

4.9.2 SIMULATING SPARSE COMPUTATION.

Another direction is supporting sparse computation, which differs from MoE in that execution is
not conditional on input routing but on the sparsity pattern of the data itself Cai et al. (2025¢); Gao
etal. (2023). To handle this, TORCHSIM can incorporate parametrized cost models that reflect the
performance characteristics of sparse kernels. These models can be driven by probabilistic distri-
butions over sparsity levels, enabling runtime estimation as a function of expected sparsity. Similar
to the approach for MoE, repeated sampling and aggregation can be used to produce stable perfor-
mance estimates, while incorporating known overheads and scaling inefficiencies associated with

sparse GPU execution.

131



410 SUMMARY

In conclusion, this work presents TORCHSIM, a principled and practical framework for estimat-
ing memory and runtime in large-scale distributed training without requiring GPU execution.
ToRrcHSIM combines modular design, operator-level memory tracking, and a high-fidelity simu-
lator that models execution, synchronization, and compute-communication overlap. Our approach
achieves high accuracy by integrating learned models for compute prediction and statistical mod-
els for communication overhead. We demonstrate that ToRCHSIM consistently achieves 99 % ac-
curacy in memory estimation and over 90% accuracy in runtime estimation across a diverse set of
models, GPU types, cluster sizes, and networks. We open-source TorcHSIM with integration into
TorcHTITAN and release pre-trained cost models and benchmark datasets, making it a widely ac-

cessible and production-ready solution for performance modeling in modern AI training systems.
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In the previous chapters, we introduced TORCHTITAN as a composable and modular framework
for scaling distributed training across thousands of accelerators, and TORCHSIM as a simulation-
based estimator that provides high-fidelity predictions of runtime and memory consumption for
training configurations. These capabilities allow users to explore large configuration spaces and
reason about performance trade-offs in a principled way.

In this chapter, we extend the utility of ToRcHSIM by using its operator-level runtime and mem-
ory estimations to drive automated activation checkpointing (AC), a technique used to reduce peak
memory consumption by trading off recomputation during backpropagation. While activation
checkpointing is commonly used, existing approaches are manually configured, automated in a non-
tractable way, lack fine-grained control, and are not optimized under realistic hardware constraints.

We present AuUTO-SAC, a fully automated two-stage system for generating optimal SAC poli-
cies using TORCHSIM ’s estimations. At the global level, we formulate an Integer Linear Program
(ILP) that determines which modules should apply AC and how much memory to discard. This
ILP is driven by piecewise-linear approximations of recomputation-vs-memory trade-oft curves,
constructed using runtime and memory statistics estimated by TorcHSIM. At the local level, we
generate operator-level policies that meet per-module memory budgets using one of three strategies:
greedy, knapsack-based dynamic programming, or a module-local ILP.

The key insight behind AuTo-SAC is to decompose the SAC optimization problem across two
hierarchical levels. The first level operates at the module granularity, where decision space is rela-
tively small, enabling efficient global coordination under memory budgets. The second level applies
targeted, operator-level policies within each selected module, allowing for fine-grained control over
which activations to retain or discard.

We integrate AUTO-SAC into TORCHTITAN to demonstrate that the system is not only effective,
but also general and extensible. This integration supports rigorous, apples-to-apples comparisons

against existing checkpointing strategies and highlights TORCHTTTAN ’s value as a research platform
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for developing memory optimizations.

AuTo-SAC supports all distributed training strategies handled by TorcHTITAN, including
Fully Sharded Data Parallel (FSDP), Tensor Parallelism (TP), and Context Parallelism (CP). It ad-
vances the state of the art in memory-aware training by enabling fine-grained checkpointing deci-
sions grounded in accurate simulation. In evaluations across LLMs and multi-modal generative
models, AUTO-SAC reduces recomputation overhead by up to 90% compared to naive checkpoint-
ing. Moreover, its heuristic solvers deliver near-optimal performance with orders-of-magnitude

lower runtime, making the method practical for large-scale use.

5.1 MoTivaTION AND KEY INSIGHTS

S5.1.1 AcTtivATION MEMORY DOMINATES TRAINING FOOTPRINT

Training large neural networks, especially transformer-based and multi-modal models, requires sub-
stantial GPU memory. While parameters, gradients, and optimizer states all contribute, a dominant
portion of memory is consumed by activations—intermediate tensors stored during the forward
pass for reuse in backpropagation.

Figure 5.1 shows the peak memory breakdown for two representative workloads: LLaMA 3.2
(1.2B) and Stable Diffusion 1.5 (1.06B). Across a range of batch sizes and sequence lengths, we
observe that activations consistently account for over 90% of peak memory usage. This makes ac-
tivation memory the primary target for memory optimization, particularly under tight hardware

constraints.
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Figure 5.1: Peak memory breakdown across configurations. Activations dominate memory usage in both LLM and

diffusion models.
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5.1.2 KevINnsigHT BEHIND AUuTO-SAC

Selective Activation Checkpointing (SAC) holds the promise of significantly reducing memory
consumption with minimal computational overhead. However, deploying SAC eftectively remains
challenging: it often requires manual tuning, deep knowledge of operator behavior, and lacks sys-
tematic support for fine-grained decisions. Most existing checkpointing systems are coarse-grained,
unaware of operator-level runtime costs, and do not expose actionable memory—compute trade-oft
statistics.

The key insight behind AuTo-SAC is to decompose the SAC policy generation problem into

two hierarchical levels:

* At the module level, where the number of decision points is small, we perform global mem-
ory allocation using a memory-constrained ILP. This allows efficient coordination across the

model while respecting peak memory constraints.

* At the operator level, we apply targeted policies within each selected module to decide
which specific activations to retain or discard. This enables fine-grained control tailored to

each module’s computational and memory profile.
AuTo-SAC addresses key deployment challenges by:
¢ Estimating operator-level memory and runtime via simulation,
¢ Constructing empirical memory-recomputation trade-oft curves,
* Automatically generating memory-aware policies under hardware constraints.

By separating global memory budgeting from local checkpointing decisions and grounding both
in simulation-driven estimations, AUTO-SAC ofters a principled, automated, and scalable frame-

work for applying SAC in real-world training pipelines.
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5.2 Avuto-SAC: HiGH-LEVEL DESIGN AND SOLUTION OVERVIEW

5.2.1 DESIGN PRINCIPLES

AuTo-SAC is designed to be both effective in optimizing memory and usable in practice. Its archi-

tecture is guided by the following principles:

ComPoSABILITY. AuTO-SAC works seamlessly with modern distributed training setups, includ-
ing Fully Sharded Data Parallel (FSDP), Tensor Parallelism (TP), and Context Parallelism (CP). It
is fully compatible with torch. compile, enabling policies to be applied across graph-transformed

models.

REeUsABILITY. AuUTO-SAC integrates with existing AC backends such as XLFormers and AO-
TAutograd. It acts as a policy generator—users retain their existing model structure and benefit

from improved memory efficiency without modifying training code.

INTEROPERABILITY. It supports diverse hardware and software environments, including multi-

GPU and sharded setups, making it suitable for both research and production deployments.

INTERPRETABILITY. AUTO-SAC makes checkpointing decisions transparent. Each policy in-
cludes operator-level trade-oft metrics, enabling users to inspect and reason about activation reten-

tion and recomputation.

DEBUGGABILITY.  Built-in tooling helps users visualize memory—compute trade-offs, validate

memory targets, and identify bottlenecks in the activation graph.
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5.2.2 USER EXPERIENCE

AuTo-SAC is usable out of the box, but also flexible enough for power users:

* Power Users: Can access detailed statistics and customize policies manually.
* Intermediate Users: Can inspect and tune default policies with minimal configuration.

* Beginner Users: Can simply set a memory budget and let AuTo-SAC handle the rest.

This layered experience ensures AUTO-SAC is broadly usable—whether as a plug-and-play opti-

mizer or a research tool for fine-grained control.

5.2.3 SYSTEM OVERVIEW

AuTo-SAC is a two-stage system for automatically generating selective activation checkpointing
(SAC) policies that balance peak memory constraints and recomputation cost during model train-
ing. It is designed to operate efficiently under modern memory bottlenecks by leveraging accurate
runtime and memory estimates from TORCHSIM, enabling principled decisions across both module
and operator levels.

AuTO-SAC breaks the problem into two stages:

1. Global Module-Level Optimization: Identify which modules should apply SAC and
how much memory to discard, while ensuring the peak memory usage stays within a user-

specified budget (e.g., 85% of GPU memory). This is solved as a global ILP.

2. Local Operator-Level Policy Generation: For each module selected for SAC, compute a
fine-grained policy that determines which activations to retain and which to discard to meet

the assigned memory discard target.
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This decomposition enables global coordination of memory usage and local flexibility in applying
SAC policies.
STAGE 1: GLOBAL ILP FORMULATION

The first stage determines high-level memory allocation across the model. For each module, AuTo-
SAC decides whether to enable SAC and how aggressively to discard its activations. The global
formulation aims to minimize total recomputation time across the model, while satistying memory
constraints.

To model memory usage, AUTO-SAC accounts for:
* Forward and backward activations in each module,
* Gradients and activation gradients,
* Parameter and optimizer memory (sharded and unsharded),

* Retained activations from modules yet to execute,

FSDP—speciﬁc memory components.

Each module’s potential recomputation cost is modeled using a piecewise linear approximation
of its memory—compute trade-oft curve, constructed by simulating greedy discard decisions and
measuring the cumulative impact on recomputation time. This approximation allows AuTo-SAC
to remain tractable within an ILP formulation while capturing real recomputation behavior with
high fidelity.

The ILP jointly decides which modules to apply SAC to, and how much memory to discard in
each, under a global peak memory constraint. The result is a set of module-level targets for discarded

activation memory.
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STAGE 2: LocaL SAC PoLricy GENERATION

In the second stage, AUTO-SAC generates operator-level SAC policies that satisfy the memory dis-
card targets produced by the global ILP. This step is critical for adapting to operator-specific com-
pute and memory behavior within each module.

AuTOo-SAC builds on PyTorch’s operator-level SAC infrastructure and extends it with struc-

tured analysis from TorcHSIM, including:
* Per-operator runtime and memory estimates,
* Dependency metadata for view-like, in-place, and random operators,
* Autograd tracking status.
AuTo-SAC supports three interchangeable algorithms for local policy generation:
GREEDY STRATEGY. Activations are ranked by their Memory Saving per Second (MSPS)—the
ratio of activation memory to recomputation time. Operators are greedily selected for recomputa-

tion until the desired memory discard target is reached. This approach is fast and provides strong

approx1mat10ns n practlce.

Knarsack APPROXIMATION.  The policy generation problem is framed as a 0/1 knapsack, where
operators are items with weights (memory usage) and values (recomputation cost). A dynamic pro-
gramming solver identifies which operators to retain while staying under the memory budget. This

method balances policy quality with runtime efficiency.

LocarLILP. For modules with tight budgets or highly sensitive compute behavior, an exact ILP

is used to identify the optimal set of activations to retain. Constraints ensure structural correctness
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for in-place and random ops. This approach yields the best possible policies at the cost of higher

computation time.

Greedy Algorithm: Knapsack Algorithm: Optimal ILP Algorithm:
For each operator, in the list:
S il - —

operator] Evaluate by greedy metric: (Mixed Integer Linear Programming)
| operator2 | } operator memory - ety . E E

operatord operator compute time i

e vs vs
it
Knapsack

SAC - Discarded [ | Memory Memory Budget = X

Memory Memory Budget

[

then recompute!

Figure 5.2: Local SAC policy generation strategies: greedy, knapsack, and ILP. All methods take a module-specific
memory discard target as input and output an operator-level recomputation policy.

The policies generated by this stage are integrated back into the training graph via PyTorch’s SAC

APIs, enabling memory-efficient training without user intervention.

5.2.4 SYNOPSIS

By separating global memory allocation from local policy generation, AuT0-SAC achieves both
system-level coordination and operator-level precision. The use of lightweight estimators, modular
solvers, and correctness-aware policy generation makes AUTO-SAC effective and extensible for large

models, diverse parallelism strategies, and production-scale training environments.

5.3 SAC ESTIMATOR

To support automated generation of selective activation checkpointing (SAC) policies, AuTo-SAC
introduces the SACEstimator, a module that collects detailed per-operator memory and runtime

statistics and constructs a trade-off profile between memory savings and recomputation overhead.
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5.3.1 FuncTiONALITY OVERVIEW

The SACEstimator is implemented as a TorchDispatchMode-based context manager that operates
under PyTorch’s FakeTensorMode. It observes a simulated forward pass of a module and records

metadata for every operator, including:

* Runtime (in milliseconds),
* Activation memory allocated (in bytes),
* Structural properties (e.g., view-like, random, or in-place),

¢ Whether outputs are retained by PyTorch’s autograd engine.

This information is collected into a structured SACStats object. Additional logic groups related
operators (e.g., in-place or random ops) to ensure checkpointing decisions are consistent with execu-
tion semantics.

5.3.2 OutPUTS AND DATA STRUCTURES

The SACEstimator produces three primary outputs per module:

* SACModStats: Operator-level statistics including runtime, memory, and type annotations.

* SACModGreedyOrder: Precomputed MSPS scores and operator groupings to assist in greedy

policy generation.

* SACModTradeoffStats: A memory-recomputation trade-off curve, approximated by a piece-

wise linear function, for use in global optimization.
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Figure 5.3: SAC Estimator outputs for a Transformer module in GPT-2.
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5.3.3 TRADE-OFF MODELING WITH PIECEWISE LINEAR FUNCTIONS

To efficiently integrate recomputation costs into the global ILP, AuTo-SAC models the relation-
ship between discarded activation memory and recomputation time using a piecewise linear upper
bound. This is derived by simulating a greedy discard process ordered by operator MSPS scores.

The trade-off curve 7 is computed via the following steps:

1. Begin with operators that must always be recomputed (e.g., view-like).
2. Discard additional operators greedily in descending MSPS order.
3. Ateach step, record the cumulative memory discarded and total recomputation time.

4. Fita piecewise linear upper bound using the pwlf package.

This fitted function approximates recomputation time as a function of memory discarded and is
used in the global ILP formulation as a constraint. To ensure conservativeness, the curve is shifted

by dropping the initial recomputation point and final memory point.
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Figure 5.4: From raw trade-off data to upper-bound approximation for GPT-2 Transformer module.

S.4 ANILP-BAsED GLOBAL PER MODULE AC BUDGETING ALGORITHM

The first stage of AuT0-SAC formulates a global Mixed Integer Linear Program (MILP) to deter-
mine per-module activation checkpointing (AC) decisions. Specifically, the ILP solves for:
* Whether to apply SAC to each module,

* How much activation memory to discard in modules where SAC is applied.
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The objective is to minimize total recomputation time across the model while ensuring that peak

memory consumption remains under a user-specified threshold.

VARIABLES USED

Variable Description

Vi Binary indicator: 1if SAC is applied to module 7, 0 otherwise
; Fraction of discardable activation memory selected for module 7
d; Total discarded activation memory in module 7

a; Effective backward activation memory for module 7

m; Total memory usage at module 7

max,, Peak memory usage across all modules

rep, Fractional recomputation time for module 7

rct; Absolute recomputation time for module 7 (in ms)

ACM; Total discardable activation memory for module 7

1A, Activation memory implicitly saved without SAC

TA, Total forward activations in module 7

AG; Activation gradient memory for module 7

P;, G;, O; Parameter, gradient, and optimizer memory in module 7
face Dtype scaling factor for activation memory

Table 5.1: Variables used in the global ILP formulation

5.4.1 OBJECTIVE

Lety; € {0,1} indicate whether SAC is applied to module 7, and ; € [0, 1] denote the fraction of

discardable activation memory selected. We aim to minimize the total recomputation time:

minimize E rct;

-
where rct; = sac_runtime; - rcp,, and rcp, is computed via a piecewise linear approximation of

the memory—compute trade-oft curve.
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5.4.2 CONSTRAINTS

1. D1scARDED MEMORY DEFINITION.  Each module’s discarded activation memory d; is com-

puted as:

d; = ACM; - r; — (ACM; — IA,) - ;

This formulation accounts for memory implicitly saved by Py Torch’s autograd engine in the default

case.

2. AcTIvATION MEMORY ACCOUNTING.  Effective backward activation memory 4, includes

retained activations and gradients, minus discarded memory from prior modules:

a;="TA;+AG, - > d;

J<i

3. MopULE MEMORY UsAaGE.  Total memory usage 7, is the sum of activation memory (scaled

by dtype), parameters, gradients, and optimizer state:
mz’:ﬂi'ﬁct+Pi+Gz‘+Oz‘

4. PEAX MEMORY CONSTRAINT. ~ We track peak memory using an auxiliary variable max,, and
enforce:

max,, > m; Vi, max,, < MemoryBudget

S. RECOMPUTATION TIME APPROXIMATION. Recomputation time is modeled via piecewise
linear segments (s):

rcp; > slope - 7; + intercept,, Vs € segments;
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rct; = sac_runtime; - rcp, ify; =1;  else 0

6. LogicaL CONSTRAINTS.

* SACis only applied to non-leaf and gradient-requiring modules.
* No nested AC units: if module j is a descendant of 7, then y; + 9 <L

* SAC is not applied to modules overlapping with FSDP subtrees.

5.4.3 SoLviNG THE ILP

The MILP is solved using a standard solver (e.g., CBC), subject to time limits and solution gap toler-

ances. The solver outputs:
* y;, 7;: Per-module SAC decisions and discard aggressiveness,
* d;: Memory discarded per module,
* max,,: Estimated peak memory across all modules,
* Total recomputation time across the model.

These values are passed to the second stage to guide operator-level policy generation. If the solver
fails to find a feasible solution within budget, AuT0-SAC can fall back to relaxed memory targets or

heuristic baselines.

5.5 GREEDY, KANPSACK AND ILP SAC ALGORITHMS

5.5.1 GREEDY ALGORITHM

The greedy algorithm in AuT0-SAC constructs an operator-level checkpointing policy for each

module that satisfies a given memory budget while minimizing recomputation time. It uses a simple
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yet effective heuristic based on the Memory Saving per Second (MSPS) metric:

4
MSPS; =
T

where 4; is the memory consumed and 7; the recomputation time of operator j. Operators are
ranked in decreasing order of MSPS and are discarded (i.e., marked for recomputation) until the

memory budget is met.

Symbol Description

a; Memory used by operator 7 (in bytes)

7 Runtime of operator ; (in milliseconds)
MSPS; Memory Saving per Second: i—j

B Module-level memory budget (in bytes)
stored_ops Set of operators that must be stored

recomputed_ops  Set of operators pre-marked for recomputation
policylj] Final decision: 1 = store, 0 = discard

Table 5.2: Symbols used in the greedy SAC algorithm

HANDLING SPECIAL CASES

To maintain correctness, AUTO-SAC applies special handling for:
* In-place operators: Must be treated together with their parent operator.
* Random operators: Always stored to preserve determinism.

* Autograd-tracked operators: Must be stored to comply with autograd dependencies.
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Algorithm 7 Greedy SAC Policy Generation

Require: sac_stats, sac_greedy_order_meta, memory budget Be [0, 1]
Ensure: Binary vector policy_output: 1= store, 0 = discard

1: Initialize policy_output < [1, 1, ..., 1]
Mol Z] ajs Bbytes «— B * Mioral
Load: stored_ops, recomputed_ops, inplace_op_groups, random_ops_group, msps_meta
Aggregate stored_indices with linked inplace/random groups
Mstored = Zjestored_indices aj
if Miored > Bbytes then

return policy_output with 1s for stored_indices, 0 elsewhere

end if
Initialize recompute_indices <— recomputed_ops
Mdiscarded — Zjerecompute_indices dj
: Bbytes < Bbytes - Mstored
: Sort msps_meta by descending MSPS
: while Mol — Miscarded > Bbytes do
if msps_meta is empty then

e e T e T o

return policy_output with 1s for stored_indices
end if
Pop top candidate j from msps_meta

—
S N

Add j and any linked inplace/random ops to recompute_indices
Update M discarded
: end while

N =
2SS

: forall; € recompute_indices do
policy_output[j] <= 0
: end for

NN
WD

return policy_output

ExrcutioN FLow SUMMARY

Algorithm 7 proceeds in the following stages:

1. Initialize: Begin with a policy that stores all activations.

2. Preserve Required Operators: Store any operators that are random, in-place, or tracked by

autograd.
3. Check Feasibility: If required activations alone exceed the memory budget, return early.
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4. Greedy Ranking: Rank remaining operators by MSPS and discard (i.e., recompute) the

highest-value ones until the budget is met.

S. Generate Policy: Construct a binary vector where 0 = discard (recompute) and 1 = retain

(store).

This approach provides fast, scalable, and near-optimal SAC policies, particularly effective for

large modules where exact ILP is too slow.

5.5.2 KNAPSACK-BASED ALGORITHM

The knapsack-based algorithm in AuT0-SAC models per-module SAC policy generation as a classic
0/1 knapsack problem. Each activation is treated as an item with a memory cost and a recomputa-
tion benefit. The objective is to retain a subset of activations such that the cumulative memory stays

within a given budget B, while minimizing recomputation time for discarded activations.

Symbol  Description

Memory used by operator 7 (in bytes)
Recomputation time of operator ; (in ms)
Memory budget for the module (in bytes)
Normalized memory weight of operator ;
Value of operator 7, equal to 7;
Discretized capacity of the knapsack

2 A8 8 I D

[i][c] Maximum value using first  ops within capacity ¢
policy[j] Final decision: 1 = store, 0 = discard for operator ;

Table 5.3: Symbols used in the knapsack SAC algorithm

HaNDLING CONSTRAINTS

As with other policy generators, the knapsack algorithm respects operator constraints:
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* In-place operators are treated as groups that must be recomputed or stored together.
* Random operators are always stored to preserve determinism.

* Autograd-tracked operators are automatically marked as stored.
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Algorithm 8 Knapsack SAC Policy Generation for a Module

Require: sac_stats, sac_greedy_order_meta, memory budget B € [0,1]
Ensure: Binary SAC policy vector: 1 = store, 0 = discard
1: Initialize policy_output < [0, 0, ..., 0]

2: Compute Mgl — Y T Bpytes = B+ Mioral
3: Extract stored_ops, inplace_op_groups, random_ops_group, msps_meta
4: Compute stored_indices and Mored <— Y 4; for those indices
S: if Myored > Bbytes then
6: return policy with 1s for stored_indices, 0 elsewhere
7: end if
8: Bbytes «— Bbytes — Mtored
9: Filter msps_meta to exclude ops with 7=0
10: Letz <— len(msps_meta)
11: Normalize w; < a;/ Mo, set vj < 7;
12: Setstep size § < 0.01, capacity C < | Byyies/ Mroral /9]
13: Discretize w; — [w;/?]
14: Initialize DP table: dp[i][c] - O forall 7, ¢
15: fori =1tondo
16: forc = 0to Cdo
17: if w; < cthen
18: dpli][c] = max(dp[7—1][c, dp[i—1][c — w;] + v;)
19: else
20: dpli][c] < dp[—1][¢]
21: end if
22: end for
23: end for
24: Initialize selected_indices < (), ¢ < C
25: fori =ntoldo
26: if dp[¢][c] # dp[i—1][c| then
27: Add; = 7—1and linked groups to selected_indices
28: C—c—w
29: end if
30: end for
31: stored_indices <— stored_indices U selected_indices
32: forallj € stored_indices do
33: policy_output[j] <1
34: end for
35: return policy_output
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ExrcutioN FLow SUMMARY

Algorithm 8 proceeds as follows:

1. Initialize: Set default policy to discard all activations.

2. Preprocess: Store operators required by structure constraints and update budget accord-
ingly.

3. DP Setup: Normalize operator memory, define discretized knapsack capacity, and populate

DP table.
4. Backtrack: Extract the highest-value subset of operators that meet the budget.

S. Finalize: Merge selected ops with required ones and return a binary policy vector.

This pseudo-polynomial dynamic programming approach yields high-quality SAC policies,
providing a strong trade-oft between runtime and recomputation cost compared to greedy or ILP

solvers.

5.5.3 ILP-BASED ALGORITHM

The ILP-based approach formulates operator-level SAC policy generation as a Mixed Integer Lin-
ear Program (MILP). This method provides an exact solution by determining, for each operator,

whether its activation should be stored or recomputed, subject to a module-specific memory bud-

get.

155



Symbol Description

Binary decision: 1 = store activation of operator 7, 0 = recompute
Memory used by operator j (bytes)

Recomputation time of operator ; (ms)

Memory budget as a fraction of total activation memory

Myugeee  Absolute memory budget (bytes)

(S \§ Ry

Table 5.4: Symbols used in the ILP-based SAC algorithm

PROBLEM FORMULATION

Let:

* x; € {0,1}: a decision variable indicating whether the activation of operator j is stored (1) or

recomputed (0),
* a;: memory usage of operator j,
* 7;: recomputation time of operator j,
* B: normalized memory budget,

¢ Myugger = B - > 4 absolute memory budget for the module.

The goal is to minimize recomputation time by selecting the best subset of activations to retain.

The ILP is posed as:

OBJECTIVE.

maximize E XJ . }’)
;

This is equivalent to minimizing the recomputation cost of discarded operators since:

J

E:’?_E:xj"”j
F
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is the total recomputation cost.

CONSTRAINTS

* Memory Constraint:

ij R4 < Mbudget
K

* View-Like Operators: Must always be recomputed:

x=0 Vj € view_like_ops

* Random Operators:

— If force_store_random is enabled:
x =1 Vj € rand_ops
— Otherwise, they must be grouped:
x; =x;, Vi, 1) € rand_ops
* In-Place Operators: Must follow their parent:

Xop = Xparent OF Xop =1 ifop = parent
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EXECUTION SEMANTICS

This ILP guarantees an optimal subset of activations to store under a strict memory constraint,

while preserving structural correctness. Operators are only recomputed when:

* Memory budget permits,
¢ Their recomputation cost is relatively low,

* They are not part of constrained groups (in-place or random).

FarrBack BEHAVIOR

If the solver fails to find a feasible solution (e.g., due to a tight budget or rigid constraints), AuTo-
SAC will raise an error and optionally fall back to relaxed constraints or heuristic strategies like

greedy.

Usk CASE

While this ILP solver is more computationally expensive than greedy or knapsack-based alternatives,
it is especially valuable in memory-constrained regimes or when evaluating optimality in experimen-

tal benchmarks.

S.6 EXPERIMENTAL ANALYSIS

We conduct a comprehensive evaluation of AuTO-SAC across two representative models—LLaMA
v3.2-1B and Stable Diffusion v1.5—under varied training configurations. For each configuration, we

compare five activation checkpointing strategies:

1. No AC: No checkpointing is applied. Peak memory is highest, with zero recomputation.
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2. Full AC: All foundational modules (e.g., each DecoderLayer in LLaMA) are checkpointed,

resulting in lowest memory usage but highest recomputation.

3. AuTto-SAC (Optimal, Knapsack, Greedy): Our proposed system automatically determines
which modules to checkpoint and how much memory to discard using a global ILP. The
resulting per-module budgets are used to generate operator-level SAC policies via the algo-

rithms described in Section S.5.

All AuTo-SAC runs are constrained to a memory budget of 68 GiB—85% of the total GPU

capacity—to account for fragmentation and workspace overhead.

5.6.1 MOoDEL CONFIGURATIONS

We define four configurations per model by varying batch size and sequence length (or image size),
resulting in memory demands that progressively exceed the available GPU capacity. These configu-

rations are summarized in Table S.5.

Model Config Batch Size SeqLen ImgSize Denoising Steps
C1 80 77 512 50
er C2 64 77 512 50
Stable Diffusion C3 192 > 256 50
C4 160 77 256 50
C1 6 4096 - -
C2 10 2048 - -
LLaMA v3 1B 3 16 1024 ) )
C4 12 1024 - -

Table 5.5: Configuration details for Stable Diffusion and LLaMA v3.2-1B models.
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Figure 5.5: Peak memory under various strategies. Auto-SAC nearly saturates the budget while Full AC underutilizes
memory due to lack of constraint awareness.

5.6.2 AuTo-SAC MaxiMizes MEMORY UTILIZATION

Figure 5.5 shows the peak memory usage under different checkpointing strategies. Full AC aggres-
sively discards all activations without regard to the actual memory budget, leading to severe un-
derutilization. In contrast, AUTO-SAC tailors checkpointing to the available memory and target

configuration, consistently achieving near-maximum utilization.

5.6.3 Auto-SAC SUBSTANTIALLY REDUCES RECOMPUTATION OVERHEAD (6—90%)

As shown in Figure 5.6, Full AC incurs the highest recomputation overhead. In contrast, AuTo-

SAC algorithms prioritize retaining expensive activations and discarding cheap ones, resulting in up
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Figure 5.6: Recomputation overhead under each strategy. Auto-SAC consistently outperforms Full AC. Greedy and
Knapsack are close to optimal.

to 90% reduction in recomputation time.
The overhead correlates with how much memory needs to be discarded per configuration. Among
AuTo-SAC variants, the optimal ILP achieves the lowest recomputation, with greedy and knapsack

closely matching its performance across all settings.

5.6.4 GREEDY AND KNAPSACK ARE 100X FASTER THAN OPTIMAL

Figure 5.7 compares the time to compute SAC policies across the three solvers. While the ILP offers
exact solutions, it is significantly slower than the greedy and knapsack algorithms. Greedy is the
fastest, followed closely by knapsack, and both scale well to large models with many operators—

demonstrating AUTO-SAC’s practicality for real workloads.
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Figure 5.8: Auto-SAC ILP decisions and recomputation times across memory budgets for LLaMA v3.2-1B. As budgets
increase, fewer activations are discarded, reducing recomputation.

5.6.5 CAse StupY: ILP DECIsioNs FOR LLAMA v3.2-1B

To gain intuition about AuTO-SAC’s behavior, we analyze ILP-generated SAC policies under three
memory budgets (40GB, 45GB, SOGB) for LLaMA v3.2-1B. Figure 5.8 shows both the modules
selected for SAC and the corresponding recomputation time under each budget.

We observe the following trends:

1. Higher memory budgets result in lower recomputation times.

2. The amount of discarded memory per module decreases with increasing budgets.
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3. Deeper modules are chosen less often for SAC at higher budgets, as more activations can be

stored.

5.6.6 MODULE-LEVEL ANALYSIS

To understand per-module behavior, we analyze SACStats for an individual Transformer block

(Layer 15). Table 5.6 shows the runtime and memory of each operator.

Operator Index Operator Name Runtime (ms) Memory (B)

0 pow 0.0267 67108864
1 mean 0.0134 32768
2 add 0.0000 32768
3 rsqrt 0.0000 32768
4 mul 0.0267 67108864
82 add 0.0401 0

Table 5.6: Extracted SAC statistics for a Transformer module (Layer 15) in LLaMA v3.2-1B.

We also visualize the module’s compute—memory trade-off in Figure 5.9, showing how discard-
ing different portions of memory affects recomputation time.

This analysis reveals that discarding around 60% of activations yields a near-optimal trade-oft:
significant memory savings with minimal recomputation cost. This aligns with ILP results and illus-

trates how AUTO-SAC targets the “knee” of the trade-off curve to balance efficiency and accuracy.

5.7 SUMMARY

We presented AuT0-SAC, a principled and scalable algorithm for automatically generating selective
activation checkpointing (SAC) policies that minimize recomputation while adhering to mem-
ory constraints. Built on top of high-fidelity runtime and memory estimations from TORCHSIM,

AuTo-SAC decomposes the SAC optimization problem into two hierarchical stages: a global ILP
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Figure 5.9: Compute-memory trade-off curve for Layer 15 in LLaMA v3.2-1B. Discarding 60% of memory leads to <5%
recomputation overhead.

that assigns per-module memory discard budgets, and local operator-level policies that determine
which activations to store or recompute.

At the global level, we introduce a memory-aware ILP that uses piecewise-linear trade-off approx-
imations to make module-level checkpointing decisions under a peak memory constraint. At the
local level, we provide three policy generation algorithms—greedy, knapsack-based, and ILP—that
vary in speed and optimality, allowing users to make trade-ofts between policy quality and solver
runtime.

We integrate AuTO-SAC into the TORCHTITAN framework, enabling support for all modern
distributed training strategies including FSDP, TP, and CP. Our system is compatible with dy-
namic graph transformations via torch. compile, and can be easily adopted across diverse training
pipelines.

Through comprehensive experiments on LLaMA and Stable Diffusion models, we show that

AuTo-SAC consistently maximizes memory utilization, reduces recomputation overhead by up to
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90%, and delivers near-optimal checkpointing policies with orders-of-magnitude faster runtimes
when using heuristic solvers. Our system also enables fine-grained introspection of operator-level
trade-offs and adapts seamlessly across varying memory budgets.

In doing so, AUTO-SAC advances the state of the art in memory-efhicient training and demon-
strates how simulation-driven estimation and modular optimization can make activation check-

pointing more effective, interpretable, and practical at scale.
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Thesis Summary

Training large AI models requires selecting optimal configurations across a vast space of parallelism
strategies, memory optimizations, and precision settings. Given a model, dataset, and hardware
platform, identifying and implementing the empirically optimal distributed training configura-
tion remains a time-consuming and error-prone task, often requiring expert intuition, extensive
benchmarking, and significant iteration. This thesis introduces LEGOAI, a system that automates

the synthesis, simulation, and deployment of efficient distributed training strategies. LEGOAI au-
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tomatically identifies high-performance training recipes tailored to a given context and generates
production-ready implementations that scale to thousands of GPUs.

LEGOAI comprises two core subsystems. The first, TORCHTITAN, is a unified, modular, and
production-grade training framework that supports composable 4-D parallelism, hardware-software
co-optimization, and fault-tolerant deployment. TORCHTITAN enables seamless integration of
Fully Sharded Data Parallelism (FSDP), Tensor Parallelism (TP), Pipeline Parallelism (PP), and
Context Parallelism (CP). Across a range of LLaMA 3.1 models, TOoRCHTITAN achieves speedups
of 65.08% for 8B at 128 GPUs, 12.59% for 70B at 256 GPUs, and 30% for 405B at 512 GPUs over
optimized baselines, while enabling long-context training with 4D parallelism on NVIDIA H100
clusters.

The second subsystem, ToRCHSIM, is a high-fidelity simulator for predicting runtime and mem-
ory usage without requiring actual GPU execution. It combines learned compute models with an-
alytical communication models and emulates GPU multi-stream execution behavior, capturing
operator-level compute-communication overlap and tensor memory lifetimes. TorRcHSIM achieves
99.9% accuracy in memory estimation and over 90% accuracy in runtime prediction across diverse
models (e.g., CLIP, T5, LLaMA), hardware platforms (A100, H100), and interconnects (Infini-
Band, RoCE), covering FSDP, TP, CP, and hybrid configurations.

To demonstrate the extensibility of LEGOAI and its ability to drive optimization, this thesis in-
troduces a principled and scalable system for generating selective activation checkpointing (SAC)
policies. It uses TORCHSIM’s fine-grained predictions to construct empirical memory-compute
trade-oft curves and formulates SAC as a two-level optimization problem: a global ILP selects
memory-constrained modules for checkpointing, and local solvers generate operator-level SAC
policies using heuristics, dynamic programming, or exact ILPs. Integrated into TORCHTITAN, this
system reduces recomputation overhead by up to 90% compared to naive checkpointing. Its heuris-

tic solvers match ILP-level performance while running several orders of magnitude faster, making
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SAC tractable at scale.

Together, these contributions establish LEGOALI as the first system to unify synthesis, simulation,
and deployment for distributed training. By eliminating redundant experimentation, optimizing
memory-compute trade-offs, and scaling efficiently across models and hardware, LEcoAl signifi-
cantly reduces the cost and complexity of large-scale Al training while expanding the design space of

what is possible.
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