Computation-Cautious
Machine Learning Systems

A DISSERTATION PRESENTED
BY
ABDUL WASAY
TO
THE JOHN A. PAULSON SCHOOL OF ENGINEERING AND APPLIED SCIENCES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DoOCTOR OF PHILOSOPHY
IN THE SUBJECT OF
COMPUTER SCIENCE

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
MAy 2021

(©2021 ABDUL WASAY
ALL RIGHTS RESERVED.

Thesis advisor: Professor Stratos Idreos Abdul Wasay

Computation-Cautious
Machine Learning Systems

ABSTRACT

Deriving knowledge from data is central to how we live, learn, and decide: Machine
learning and data science pipelines are extensively applied to extract knowledge from an
ever-increasing amount of data across all fields including high-energy physics, astronomy;,
and genetics. These pipelines consist of multiple stages from data exploration to model
design, training, and deployment. Different stages have their own set of algorithms and
techniques, yet they share a common challenge — they involve repeated computation
on huge data sets. This bottleneck slows down machine learning pipelines, which is
problematic not only for latency-sensitive applications (such as self-driving cars and
medical diagnosis), but as a result of this bottleneck, only a fraction of the generated
data can be processed leading to lower quality models, fewer decisions per time unit,

and overall, limited applicability of machine learning.

We introduce Computation-Cautious Machine Learning Systems — Data Canopy, Deep
Collider, and MotherNets — that address the bottleneck of repeated computation and
data movement across four critical stages of machine learning pipelines: (i) data explo-
ration, (ii) model design, (iii) model training, and (iv) model deployment. During data
exploration, Data Canopy enables reuse of computation and data movement across dif-
ferent statistical queries leading to several orders of magnitude (10x to 100x) improve-
ment in the speed of data exploration and machine learning algorithms. Deep Collider
reconsiders conventional model design wisdom and enables drastically better model de-
sign by balancing simultaneously accuracy, training time, deployment time, and memory
resources. Finally, MotherNets enables fast and accurate training and deployment of
ensembles of deep neural networks (2 to 3 percent reduced absolute test error rate and
up to 35 percent faster training as compared to state-of-the-art approaches). Mother-
Nets also establishes a new and navigable Pareto frontier for the accuracy-training cost

tradeoff of deep neural network ensembles.

1l

Contents

1 INTRODUCTION 2
1.1 The Machine Learning Era 2
1.2 Machine Learning Happens in Pipelines 2
1.3 Bottleneck: Repeated Computation and Data Movement 5
1.4 Computation-Cautious Machine Learning Systems 8
1.5 Thesis Outline (How to Read) 11
2 DBACKGROUND 12
2.1 Data Exploration and Statistics 12
2.2 Deep Learning Lo 14
2.3 Deep Learning and Classification 17
2.4 Convolutional Neural Networks 22
2.5 Deep Neural Network Ensembles 25
2.6 Transferring Knowledge between Neural Network Models 28
3 RELATED WORK 33
3.1 Efficient Data Exploration 33
3.2 Understanding Deep Learning Model Design 39
3.3 Efficient Deep Learning oo 42
3.4 Fast Ensemble Training and Deployment 43
4 DATA CANOPY: ACCELERATING EXPLORATORY DATA ANALYSIS 48
4.1 Example: Query Processing in Data Canopy 48
4.2 Design Concepts L L 50
4.3 Data Structure 53
4.4 Operation Modes 56
4.5 Query Processing L oL 57
4.6 Selecting the Chunk Size 61
4.7 Memory Footprint Lo oL 63

v

4.8 Out-of-Memory Processing 65

4.9 Handling Updates 67

4.10 Experimental Analysis. 68

5 DEeEP COLLIDER: ENABLING BETTER NEURAL NETWORK DESIGN 82

5.1 Framework: Design Space 83

5.2 Framework: Data, Architectures, and Metrics 85
5.3 Guideline: Ensembles Outperform Single Network Models After a Low

to Moderate Parameter Threshold 86

5.4 Guideline: Ensembles Train Faster and Provide Similar Inference Time 93

5.5 Guideline: Ensembles are Memory Efficient 96

6 MOTHERNETS: RAPID DEEP ENSEMBLE LEARNING 98

6.1 Constructing MotherNets 98

6.2 Training MotherNets oL 104

6.3 Navigating Accuracy-Training time Tradeoff 106

6.4 Shared-MotherNets: Enabling Fast Ensemble Inference 106

6.5 FExperimental Analysis. 108

7 CONCLUSION AND FUTURE WORK 121

REFERENCES 144

Acknowledgments

I want to begin by thanking my advisor, Stratos Idreos, first for believing in me and
second for his gracious support and advice throughout my Ph.D. I grew tremendously
as a writer, researcher, teacher, communicator, and person under his mentorship. I
particularly enjoyed the many hours we spent learning about deep neural networks

together or fine-tuning research manuscripts and conference presentations.

I am indebted to so many teachers and mentors who, over the years, expanded the way
I look at the world. First and foremost, I would like to give a special thanks to IThsan
A. Qazi for his excellent class on data structures at LUMS, where this journey truly
began, and for the countless ways in which he has been part of it since. I am incredibly
grateful to: Nabiha Meher Shaikh, whose course at LUMS made me fall in love with
the art of writing; Finale Doshi-Velez, whose machine learning course at Harvard serves
both as an inspiration and background for this work; and teachers from various middle
and high schools I attended in Porto Novo, Mbale, Lahore, and Rabwah who got me
ready, bit-by-bit, for this journey.

None of this will be possible without the support of the excellent, funny, and eccentric
people I spent my days at Harvard DASLab with: Mike Kester, Manos Athanasoulis,
Lukas Maas, Brian Hentschel, Kostas Zoumpatianos, Niv Dayan, Wilson Qin, Kenneth
Bggh, Subarna Chatterjee, and Sanket Purandare. Thanks for countless brainstorming
sessions, for being there through many paper rejections, and for, you know, hanging out.
More broadly, I am thankful to many collaborators with whom I had the chance to work
with and learn from: Alkis Smitsis, Xinding Wei, Zichen Zhu, Pablo Ruiz Ruiz, Yuze
Liao, Sanyuan Chen, Neil Band, Chang Xu, Haochen Yang, Ziyi Guo, Longshen Ou, and
Dhruv Gupta. Also, a very special thanks to Susan Welby for providing administrative
support during my Ph.D.

Finally, I am thankful to my family and friends from all over for their support throughout

this journey. Shukriya.

vi

Introduction

1.1 THE MACHINE LEARNING ERA

Machine learning enables computers to perform tasks by learning from experience —
i.e., data — instead of executing explicit programs. Over the past two decades, the
ease of collecting and storing data coupled with the introduction of highly-specialized
machine learning algorithms has enabled computers to efficiently and accurately perform
many complicated tasks. Computers can now classify images at human accuracy, infer
meaning from natural language, and help drive cars (Bengio et al. 2015). The future
holds even more significant promise for machine learning with the increasing adoption

of various machine learning methods in medicine, science, and society.

1.2 MACHINE LEARNING HAPPENS IN PIPELINES

To perform any machine learning task, no matter how simple or complex, machine
learning practitioners and data scientists assemble pipelines, which are made up of
multiple stages (Sparks et al. 2017; Boehm et al. 2019): (i) Data exploration, (ii) Model

design, (iii) Model training, and (iv) Model deployment. These stages progressively
convert raw data sets into machine learning models that are deployed to automate

various decision-making processes.

We look at machine learning pipelines across three important scientific domains identi-

fying characteristics of all four stages.

Example 1: Detecting Rare Events in High-Energy Physics Data. Machine
learning pipelines are prevalent in High-Energy Physics, a data-intensive domain where
particle accelerators (such as the Large Hadron Collider) generate petabytes of data
every day. One such pipeline is deployed at the European Organization for Nuclear
Research (CERN). This pipeline uses deep learning models to detect rare events in data
generated by particle accelerators. Rare events have specific statistical signature and

are of interest to particle physicists (Nguyen et al. 2019).

We find all four stages of machine learning pipelines here. This pipeline begins at the
data exploration phase: Data scientists use filters and statistical properties to narrow
down a training set that contains sufficient examples of rare and interesting events. The
next step is to design a deep learning model that can learn to detect rare events from
the training data set with high accuracy. To do this, data scientists use a sample of
the training data set to choose between hundreds of deep learning models that range
from fully-connected neural networks to convolutional and recurrent neural networks.
The selected model is then trained on the entire training data set. The trained model

is then deployed and it is periodically retrained to account for new data.

Example 2: Linking Cell Expression to Genetic Data. Genomics is another
domain that employs machine learning pipelines. An important area of inquiry in
genomics is to understand the relationship between genotype (genetic information stored
in the DNA) and phenotype (the cells that make up an organism) (Moen et al. 2019). A
machine learning pipeline is used to automatically learn this relationship from genetic

data originating from various sensors (Culley et al. 2020).

In this machine learning pipeline, the first step (which falls under data exploration)
involves correlation analyses between different streams of sensor data. The aim here is

to discover which subsets of data provide the most information for model design and

training. In the next stage, i.e., model design, genomic researchers come up with custom
neural network models called Multi-modal Artificial Neural Networks that can integrate
information from various genetic data sources. This design process requires an extensive
set of experiments on dozens of existing models. The finalized model is then trained and
evaluated on various combinations of data sources and made available to the genomics

research community.

Example 3: Discovering New Planets from Telescope Data. Finally, we look at
a machine learning pipeline in Astronomy. In this field, a major new source of data is
NASA’s Kepler Space Telescope program. This program captures signatures of various
planets in the solar system that have similar properties to planet Earth. The data
it captures, however, is extremely large and noisy. By using deep learning pipelines
identical to those used in image classification, astronomers recently discovered two new
planets (Shallue and Vanderburg 2018).

We see all four stages at work in this machine learning pipeline: In the first step,
through a combination of filtering and exploratory statistical analysis, data scientists
synthesize the training data from three different data sources. During the design stage,
data scientists search over the design space of various types of convolutional neural
network models. During the training phase, they train multiple copies of the same se-
lected model with different initializations to create an ensemble having various diversely-
trained networks. Finally, during the deployment phase, outputs from every network of
the ensemble are averaged together to produce a final set of predictions for candidate

planets. These set of predictions are then verified by astronomers.

Machine Learning Pipelines are Everywhere. These pipelines are not exclusive
to these three domains but we can find instances of these pipelines across all areas
ranging from education to agriculture to finance (Boehm et al. 2019). Overall, these
pipelines allow data scientists and experts from various domains to convert raw data

into deployable models that can enable multiple forms of decision-making.

Queries target sub-ranges of Queries’ ranges partially Queries ask for different Queries show a mixture of the

other queries overlap with other queries time statistics on the same range aforementioned repetitions
Ql: |] [J [] [J
Q2: []] [) [I J
Q3: | J J [I []
Column Query range Il W Statistic types

Figure 1.1: In exploratory statistical analysis, queries request for a given statistic on a
given data range and show various forms of repetition.

1.3 BOTTLENECK: REPEATED COMPUTATION AND DATA MOVEMENT

All stages of machine learning pipelines have their own set of algorithms and techniques.
However, they suffer from a shared challenge: They involve repeated computation on
huge data sets. This bottleneck slows down all stages of machine learning pipelines.
Slow machine learning pipelines are problematic as many applications, such as medical
diagnosis and self-driving cars, require quickly processing new data and incorporating
it into deployed models. For instance, in one use case, where deep learning models are
applied to detect Diabetic Retinopathy (a leading cause of blindness), newly-labeled
images become available every hour. Thus, incorporating new data in the neural network
models as quickly as possible is crucial to enable a more accurate diagnosis for the
immediately next patient (Gulshan et al. 2016). Additionally, slow machine learning
pipelines limit machine learning’s reach as only application scenarios with a significant

amount of compute and memory resources can feasibly use these pipelines.

We characterize the sources of this bottleneck, i.e., repeated computation and data

movement, across the different stages of machine learning pipelines:

1.3.1 DATA EXPLORATION

Data Exploration and Statistics. Machine learning pipelines begin with a data
exploration phase where statistics play an essential role (Surajit 2016). During this
phase, data scientists develop an initial understanding of the data by using statistics
to summarize variables within the data set, understand trends in variables, and cor-
relate these trends with those of other variables (Guo 2012; Madigan and Wasserstein

2013). For instance, variance in seismic activity of an area represents how prone it is

to earthquakes, and correlations between seismic measurements across various sensors
help to predict future patterns of seismic activity (Williams et al. 2010). Moreover,
statistics — such as mean, variance, and correlations — serve as building blocks of core
machine learning classification and filtering algorithms such as simple linear regression,
Bayesian classification, and collaborative filtering (Bishop 2006). Overall, statistical

analysis forms the staple of data exploration across all fields.

Bottleneck: Repetitive Calculation of Statistics. Exploratory statistical analysis,
a typically unstructured procedure, results in the repetitive calculation of statistics.
Every result provides data scientists with knowledge and cues for what to ask next or
which model to try out. Different statistics are successively calculated on the same
part of the data. Even the exact statistics are recomputed with varying resolution
and on data ranges (data portions) that overlap with previously accessed data ranges.
Effectively an exploration session consists of numerous such repeated queries until a
pattern is found (Idreos et al. 2015). Figure 1.2 summarizes different forms of such
repetitive access patterns. Overall, these repetitive access patterns result in repeated

computation and data movement, slowing down the process of exploratory analysis.

1.3.2 MODEL DESIGN

Designing Deep Learning Models under a Resource Budget. The next step
in the machine learning pipeline is model design, i.e., deciding on what model to use
for a specific application scenario. Modern machine learning pipelines increasingly use
deep learning models to capture complex patterns in data sets. Designers of these deep
learning models navigate a complex design landscape: To start off, they decide on a
network architecture to use in their model. Then, they have to consider whether to use
a single network or build an ensemble model with multiple networks. Additionally, they
have to decide how many neural networks to use as well as their individual designs i.e., to
find a desirable configuration of depth, width, and number of networks in their model.
Modern applications with diverse requirements further complicate these decisions as
what is desirable varies. Facebook, for instance, requires convolutional neural network

models that strike specific tradeoffs between accuracy and inference time across 250

different types of smartphones (Wu et al. 2019). As a result, not just accuracy but
a diversity of metrics — such as inference time and memory usage — inform whether a
model gets used (Sze et al. 2017b).

Bottleneck: Lack of a Robust and Holistic Assessment. There is no holistic
empirical or theoretical framework to consistently analyze the relationship between a
neural network design (with a given configuration of depth, width, and number of net-
works) and various metrics of interest such as accuracy, training time, and memory
usage. As a result model designer rely on incomplete conventional wisdoms that result
in either a series of sub-optimal designs or expensive hit-and-trial exploration of the
design space. Both of these outcomes ultimately result in repeated computation and

data movement as multiple models have to be trained and analyzed every single time.

1.3.3 TRAINING AND DEPLOYMENT

Training and Deploying Neural Network Ensembles. The next step in machine
learning pipelines is to train and deploy the machine learning model. Here, various
applications increasingly train and deploy ensembles of multiple neural networks. This
is because ensembles function as collections of experts and have been shown, both theo-
retically and empirically, to improve generalization accuracy (Russakovsky et al. 2015).
For instance, deep neural network ensembles predict relationships between chemical
structure and reactivity (Agrafiotis et al. 2002), segment complex images with multiple
objects (Ju et al. 2017), and are used in zero-shot as well as multiple-choice learning
(Guzman-Rivera et al. 2014; Ye and Guo 2017). Further, several winners and top per-
formers on the ImageNet challenge are ensembles of neural networks (Lee et al. 2015a;
Russakovsky et al. 2015).

Bottleneck: The Growing Training and Deployment Cost. Using ensembles of
multiple deep neural networks takes a prohibitively large amount of time and compu-
tational resources. Even on high-performance hardware, a single deep neural network
may take several days to train. This training cost grows linearly with the ensemble’s

size as every neural network in the ensemble needs to be trained (Szegedy et al. 2015; He

Queriosity

Data Canopy More or Less MotherNets Shared-MotherNets

(i) Data exploration (i) Model design (iii) Model training (iv) Model deployment

Figure 1.2: We design computation-cautious machine learning systems that address the
bottleneck of repeated computation and data movement across all stages of machine
learning pipelines.

et al. 2016; Huang et al. 2017b,a). Similarly, during deployment, we need to infer from
every member of the neural network ensemble. The rising cost boils down to repeated
computation and data movement: During training, multiple different neural networks
need to be trained. During deployment, every data item needs to be passed through all

of the neural networks in the ensemble.

1.4 COMPUTATION-CAUTIOUS MACHINE LEARNING SYSTEMS

We design Computation-Cautious Machine Learning Systems that address the growing
bottleneck of repeated computation and data movement across all stages of machine
learning pipelines: Data Canopy accelerates the process of exploratory statistical anal-
ysis by reusing computation and data movement between different statistical queries.
Deep Collider demystifies the process of model design through an empirical framework
to holistically analyze the design space of neural network models. Finally, MotherNets
enable rapid training and deployment of neural network ensembles by sharing compu-

tation and data movement between different neural networks in an ensemble.

1.4.1 DaAtA CANOPY: REUSE DURING DATA EXPLORATION

We take a step to address the bottleneck of repeated computation and data movement
during data exploration through Data Canopy, where statistics are synthesized from
a library of basic aggregates computed and managed over sub-ranges of the data set.
Data Canopy enables the reuse of these basic aggregates across overlapping parts of the

data set and between different types of statistics. Data Canopy can be populated ahead

of time (with a single pass over the data set), during the analysis phase itself, or in an
opportunistic manner. Future queries can avoid having to repeatedly go back to the base
data but instead can synthesize statistics from Data Canopy. Compared to state-of-the-
art tools (such as NumPy and Modeltools) that provide static and slow performance,
the performance of Data Canopy keeps on improving as future queries can use past
computation and data access leading to multiple orders of magnitude improvement in

the speed of exploratory workloads and statistics-based machine learning algorithms.

1.4.2 DEgEP COLLIDER: DEMYSTIFYING MACHINE LEARNING MODEL DE-
SIGN UNDER A PARAMETER BUDGET

We develop a detailed and extensive experimental framework to isolate the impact of
the critical design knobs: (i) depth, (ii) width, and (iii) number of networks, on all
relevant metrics: (i) accuracy, (ii) training time, (iii) inference time, and (iv) memory
usage. Crucially the number of parameters is a control knob in this framework and
remains fixed across results that can be studied together. We apply this framework to
a critical part of the design space that is not well-understood: That is how to decide
between the alternatives of expanding a single network model or increasing the number
of networks and using them together in an ensemble. This framework questions and
expands the conventional wisdom in deep learning model design: We show that under a
parameter budget, ensembles can provide not only better accuracy than a single model

but can also train and deploy faster while using far less memory

1.4.3 MOTHERNETS: SHARING COMPUTATION DURING MODEL TRAINING
AND DEPLOYMENT

During the training and deploying of deep neural network ensembles, we address this
bottleneck of repeated computation and data movement through MotherNets. The high-
level idea is to first capture the structural similarity present in a given ensemble in the
form of one or more MotherNets and then to train or infer from these MotherNets only
once. During training, instead of every network, only the MotherNets are trained from

scratch. What is learned by the trained MotherNets is then transferred to every member

of the ensemble; Every network only requires a minor amount of incremental training.
MotherNets, in a similar fashion, improves deployment, where parameters originating
from the MotherNets are tied together during training. This yields an ensemble with
a single copy of MotherNets parameters reducing the inference time and memory re-
quirement significantly. MotherNets is the first general-purpose fast ensemble training
and deployment technique that extends to ensembles of diverse architectures as opposed
to state-of-the-art approaches that generate ensembles from a monolithic architecture.
MotherNets also establishes a new Pareto frontier for the accuracy-training cost tradeoff
of deep neural network ensembles and provides the most accuracy for the least amount

of training time when compared to all other ensemble training techniques.

1.4.4 PUBLISHED PAPERS

The material in this thesis has been the basis for a number of publications in major

refereed data systems and machine learning venues.

1. Abdul Wasay, Manos Athanassoulis, and Stratos Idreos, Queriosity: Automated
Data Exploration, in Proceedings of the IEEE International Congress on Big
Data, 2015 (Wasay et al. 2015).

2. Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos, Data Canopy: Accel-
erating Exploratory Statistical Analysis, in Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2017 (Wasay et al. 2017).

3. Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos,
MotherNets: Rapid Deep Ensemble Learning, in Proceedings of the Conference
on Machine Learning and Systems MLSys, 2020 (Wasay et al. 2020).

4. Abdul Wasay and Stratos Idreos, More or Less: When and How to Build Convolu-
tional Neural Network Ensembles, in Proceedings of the International Conference
on Learning Representation ICLR, 2021 (Wasay and Idreos 2021).

5. Abdul Wasay, Subarna Chatterjee, and Stratos Idreos, Deep Learning: Systems
and Responsibility, in Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, 2021 (Wasay et al. 2021).

10

1.5 Tuesis OuTLINE (HOw TO READ)

We organize the rest of the thesis as follows. First, Chapter 2 provides background
on various stages of machine learning pipelines. In specific, we provide an overview of
(i) data exploration and the role played by statistics in this process, (ii) fundamentals
of deep neural networks and how to train and deploy them, (iii) basics of neural net-
works ensembles, and (iv) how we can transfer what is learned by one model to another.
Chapter 3 positions Computation-Cautious Machine Learning Systems with respect to
related work from data systems and machine learning communities. We outline the nov-
elty this thesis brings on top of existing systems and frameworks. After reading Chapter
3, the rest of the chapters can be read independently. Chapter 4 through Chapter 6
describe the three Computation-Cautious Machine Learning Systems: Data Canopy,
Deep Collider, and MotherNets. We provide detailed system design and algorithms.
We also extensively evaluate these systems and show how they advance state-of-the-art
techniques in their respective stages of machine learning pipelines. Finally, in Chapter
7, we conclude and discuss primary future research goals for Computation-Cautious

Machine Learning Systems.

11

Background

2.1 DATA EXPLORATION AND STATISTICS

Many machine learning pipelines across different fields begin with a data exploration
phase (Surajit 2016). During this phase, data scientists develop an initial understanding
of the data by using statistics to summarize variables within the data set, understand
trends in variables, and correlate these trends with those of other variables (Guo 2012;
Madigan and Wasserstein 2013). For instance, variance in seismic activity of an area
represents how prone it is to earthquakes, and correlations between seismic measure-
ments across various sensors help to predict future patterns of seismic activity (Williams
et al. 2010). Moreover, statistics — such as mean, variance, and correlations — serve as
building blocks of core machine learning classification and filtering algorithms such
as simple linear regression, Bayesian classification, and collaborative filtering (Bishop

2006). Overall, statistical analysis forms the staple of data exploration across all fields.

12

Exact Template Column set
repetition repetition repetition
SQLShare 54.65% 36.93% 4%
SDSS 99.8% 99.7% 97%

Table 2.1: Exploratory workloads in the sciences exhibit high repetition in queries.

2.1.1 CHARACTERIZING EXPLORATORY WORKLOADS

Exploratory statistical analysis, a typically unstructured procedure, results in the repet-
itive calculation of statistics. Every result provides data scientists with knowledge and
cues on what to ask next or which model to try out. By query here, we mean a request
to compute a given statistic over a given data part. Different statistics are successively
computed on the same part of the data. Even the exact statistics are recomputed
with varying resolution and on data ranges (data portions) that overlap with previ-
ously accessed data ranges. Effectively an exploration session consists of numerous such

repeated queries until a pattern is found (Idreos et al. 2015).

Repetition appears in various forms in various workloads. Table 2.1 shows the repetition
in two publicly available workloads: SDSS SkyServer (Foundation) and SQLShare (Howe
et al.). These workloads are composed of both handwritten and computer-generated
SQL queries. Up to 97 percent of the queries repeat at least once in SDSS. Queries
repeat less frequently in the SQLShare workload. However, up to 55 percent of queries
still target a non-distinct set of columns. Furthermore, studies show that repetition is

higher in interactive exploratory analysis (Jain et al. 2016).

2.1.2 DATA SCIENCE TOOLS AND STATISTICS

Data scientists have a spectrum of tools available to them for exploratory statistical
analysis. At one end, this spectrum includes software libraries, such as NumPy (num
2013) and Modeltools (Foundation 2016), with flexible functionality but no in-built
data management. On the other end of this spectrum are highly-optimized relational
database systems but with limited statistical functionality. Database connectors like
SciDB-Py (SciDB 2016), MonetDB.R (Miihleisen and Lumley 2013), and Psycopg (psy

13

2014) connect a database backend with a flexible language, thereby providing a good
compromise between flexibility and data management. Such connectors offer the pri-

mary benefit of computing statistics inside the database system without moving data.

2.2 DEEP LEARNING

Deep learning has seen an increasing amount of success thanks to deep neural networks,
a set of powerful computational models that can learn intricate and complex patterns
directly from data (LeCun et al. 2015). Researchers across several research communities
can now solve problems that had evaded them for decades by applying deep neural
networks. For instance, by applying deep learning models, researchers can localize and
label objects within an image 3 x more accurately than state-of-the-art classical methods
(Liu et al. 2020). These intricate computational models have come to power countless
aspects of our society today: Deep neural networks can translate languages, help drive
cars, and diagnose various diseases (Kim 2014; Dong et al. 2015; Niepert et al. 2016;
Shen et al. 2017).

The concept of deep learning has been around for over half a century. Researchers in-
troduced neural networks in the forties and developed algorithms to train them in the
sixties (McCulloch and Pitts 1943; Rosenblatt 1958; Widrow et al. 1960). In the past
decade, however, three complimentary trends have catapulted deep learning into the
academic and industrial limelight: First, hardware capabilities have improved remark-
ably (Sze et al. 2017a). With massive data parallelism, GPUs and TPUs can now train
and deploy deep neural networks faster than ever before. Second, we can collect, store,
and manage data at an unprecedented scale (Roh et al. 2019). Innovation in sensor
technology, storage media, and database systems has significantly reduced the cost of
obtaining data to feed deep neural networks. Finally, all key players in the computer
science industry developed and open-sourced software libraries to design, train, and de-
ploy deep neural networks (Nguyen et al. 2019). As such, researchers and practitioners
in any field of human knowledge can quickly prototype and use deep learning pipelines.
The future holds even more promise as researchers and practitioners develop bespoke
neural network architectures and cultivate an ecosystem of hardware and software to

better support existing and emerging deep learning architectures.

14

2.2.1 DEEP NEURAL NETWORKS

Deep neural networks are the workhorse of deep learning. They are capable of learning
arbitrary functions from massive data sets. For instance, in classification tasks, deep
neural networks can learn the mapping between data items and their labels, whereas, in
sequence prediction tasks, they can learn how a given sequence relates to the sequence
that follows it. What makes deep neural networks extremely powerful is that they
automatically discover an appropriate representation from a large amount of training
data for a given task. Data scientists can apply deep neural networks to new and

arbitrary tasks, for which expert knowledge is either lacking or unscalable.

We can see an exciting example of deep neural network’s versatility in how they are
applied to diagnose Diabetic Retinopathy (a leading cause of blindness) (Kanungo et al.
2017). In this domain, experts are in short supply and are concentrated in a few
geographical areas. However, they can conveniently label images gathered from various
patients across the world. These labeled images are then used to train convolutional
neural networks that are then deployed in mobile phones. Now, anyone with a mobile

device can take a picture of a patient’s eye and screen for Diabetic Retinopathy.

Deep neural networks today have dozens of layers consisting of non-linear modules.
Every layer transforms its input from one level of representation to a more abstract level,
which better captures aspects of the data set that are meaningful for a classification
or detection task. For instance, when classifying images, the first layer may capture
an image’s low-level properties, such as the presence or absence of edges or dots. The
second layer combines these properties to detect motifs such as a collection of edges.
The third layer can assemble these motifs further, and the following layers can detect
even more complex combinations of motifs (Zeiler and Fergus 2014; LeCun et al. 2015).
Crucially, deep neural networks can learn these representations using a general-purpose

training procedure.

We introduce various concepts related to the fundamental structure, training, and de-
ployment of neural networks. We align our notation with that of Goodfellow et al.
(2016). We summarize this notation in Table 2.2.

15

Layer i Layer i+1

N

Computation
in a neuron

one neuron
parameters Q

Figure 2.1: Neural networks are made up of layers of neurons, each neuron takes as
input a subset of neurons from the previous layer and applies a set of weights to them.

[

2.2.2 FUNDAMENTALS OF DEEP NEURAL NETWORKS

Neuron. A neuron is the fundamental building block of a neural network. Every
neuron has an associated set of parameters or weights and, optionally, a non-linearity
or activation function. Figure 2.1 depicts two layers of a neural network, where one of
the neurons is highlighted in bold. The set of weights and the activation function of
the highlighted neuron are {w;,wy, ws} and g(-) respectively. A neuron takes as input
one or more neurons’ output (or if the neuron is from the first hidden layer, it takes as
input some region from within the input data item such as one or more pixels from an
image) and computes an output. The output of a neuron is a function of its weights

and the inputs it receives.

Layer. A layer in a neural network is composed of a set of neurons. The neurons in
a certain layer interact with output from the previous layer. The output of this layer
feeds into the next layer. In general, a neural network consists of an input layer, an
output layer, and one or more hidden layers. Figure 2.1 depicts two layers (labelled

layer ¢ and layer ¢ 4+ 1) with three neurons each.

Receptive Field. Every neuron in a layer has an associated receptive field, which is
the subset of neurons from the previous layer fed as input to that neuron. In Figure 2.1,

the receptive field of the highlighted neuron consists of every neuron from the previous

16

Description Notation
Training data set X (frain) — {xW) .. (M} y (brain) — {yW, ...y}

NN parameters 0

Function of a NN f(-,0)

Training predictions | ¥ (frain) _ W, . g™y

Empirical loss J(0)

Test data set X (tesh) — {213(1), -'-,iB(m/)}; y (fesh) = {y(l)a) ’y(m/)}

Trasnfer data set X (fran) — {xW) ... M), y (bran) — {yW, ... ym)}

Table 2.2: List of notations used throughout this chapter.

layer. This neuron is an example of a fully-connected neuron. In some cases, this
connectivity can be sparser, as is the case with convolutional neurons discussed later

on.

Neural Network Parameters. For a given neural network, the superset of all weights

associated with all of its neurons are called its parameters.

Neural Network Architecture. We refer to the overall setting of a neural network
as its architecture. A neural network architecture consists of various factors, including
the number of layers, number of neurons in every layer, types of neurons, activation
functions, and connectivity patterns between layers. Researchers and deep learning
practitioners design dozens of new architectures every year to suit specific application
needs and improve upon existing architectures’ efficiency and quality. For instance,
VGGNets, ResNets, Wide ResNets, and DenseNets are examples of different neural

network architectures designed for image classification in the last decade.

2.3 DEEP LEARNING AND CLASSIFICATION

Classification is a fundamental problem in machine learning that has captured the at-
tention of multiple generations of researchers across multiple fields. Given a data item,
classification is concerned with determining which of a predefined set of classes the data
item belongs to. Spam detection is a canonical classification problem, where given a

bunch of emails, we are interested in putting them in one of two classes — spam or not

17

spam. Similarly, another example is from computer vision, where we are interested in

determining the class to which an image belongs.

Generally speaking, machine learning classification is concerned with assigning labels
to data belonging to a sample space. Formally, the sample space takes the form X x Y,
where X is the space of data and Y is the space of labels. ®* € X is a data item of
an arbitrary form, whereas y € Y represents one of k class labels {1,2...k}. We are
interested in using a machine learning model to learn the mapping between X and Y
from a training data set. For instance, in CIFAR-10, a popular benchmark data set for
image classification, x is an image, and vy is the set of corresponding labels, i.e., one of
the ten categories of everyday objects (cars, dogs, cats, etc.) (Krizhevsky 2009). Figure
2.2 shows sample images belonging to each of the ten classes in the CIFAR-10 dataset.

Recently, deep neural networks have made great strides in providing close-to-human
performance on various classification tasks ranging from sentiment analysis to computer
vision. The advantage that deep neural network models bring to classification is that
they automatically infer features from labeled data during training. Consider the case
of image classification. Before deep learning, computer vision researchers tried all sorts
of things ranging from geometric methods that automatically detect edges and shapes
to hand-engineered features (where an expert specifies aspects of images that they think
are consequential to the classification task) (Huang 1996). Deep learning revolutionized
image classification. Convolutional neural networks operating on huge data sets can
automatically discover aspects or features of an image — such as dots, edges, and shapes

— that are important for a given classification task.

2.3.1 TRAINING DEEP NEURAL NETWORKS FOR CLASSIFICATION TASKS

Once a deep neural network architecture is specified, the training process is composed
of alternating forward and backward passes until a specified metric (usually training ac-
curacy) converges. Algorithm 2.1 provides an overview of this training process. Overall,
during the training process, a set of labeled inputs is provided to the neural network.
Based on this labeled data set, the neural network iteratively adjust its weights to learn

a mapping function between the data and its labels.

18

Figure 2.2: The CIFAR-10 dataset consists of images of everyday object. Each image
is of size 32 x 32 pixels and has one of ten labels attached to it.

Training Data Set. The training data set, also referred to as the labelled data set,
consists of m ordered data items X (79" — {2} and corresponding labels
y (train) — {yD, ..., y™}. Here, () is a vector of arbitrary length and y¥) is a vector
having as many components as labels in the data set and the component corresponding
to the label of () is set to 1 and the rest of the components are set to 0, i.e., the labels
are encoded using their one-hot representation. The CIFAR-10 dataset, for instance,

consists of 50K training images. An image belongs to one of ten classes.

Forward Pass. Given a neural network architecture with parameters 6, the forward
pass executes the neural network from the input layer to the output layer. Initially,
the parameters 0 are initialized in a random manner. The forward pass proceeds by
sequentially applying all parameters associated with every layer to the previous layer
and feeding its output to the next layer. This results in a set of predictions Y(tmm) =
{W, ..., 9™} corresponding to items in X Here, ¥ = f(x®,), where f(-,0)
is the functional mapping of the neural network.

« (train)

Empirical or Training Loss. The empirical or the training loss J(Y
(train)

Y(train))
quantifies how different the predictions Y are from the labels (or the ground truth)
Y (fr@in) - This loss can take various forms depending on the problem at hand and is

usually differentiable with respect to the parameters 6.

Backward Pass. During the backward pass, based on the quality of the prediction, the
weights associated with the neural network are adjusted. This step usually involves an
optimization method such as gradient descent. In gradient descent, first, we compute
the gradient of the training loss J(€) with respect to the parameters. Then, every

parameter in 0 is adjusted in the opposite direction of the gradient. The learning rate

19

Algorithm 2.1 Generalized deep neural network training procedure

Il’lpllt: X(tr(zin)’ Y(train)’ f()’
Initialize: 0;

while network does not converge do
// Execute forward pass

Y(trm’n) « f(X(tram)7 0)

// Quantify the empirical loss
J(0) — Jy" y terain))
// Compute gradient

G(6) + 220

00
// Update parameters
0 6—n-G(6)
end

return f(-,0)

1 quantifies how aggressively this adjustment takes place.

Convergence. A neural network is trained through a sequence of alternating forward
and backward passes until a convergence criterion is met. There are various convergence
criteria introduced in research. A simple criterion is to continue training until specified
training rounds have been exceeded or a specific training loss has been achieved. Another
criterion is to train until further training does not significantly alter the neural network

parameters or improve its training loss.

2.3.2 EVALUATION METRICS FOR DEEP NEURAL NETWORK TRAINING

Metrics to evaluate deep neural networks fall under two categories: (i) Those related to
quality, e.g., accuracy and robustness, and (ii) those related to the amount of resources
required, e.g., training time, inference time, and memory usage. Modern deep learning
pipelines are designed to optimize for one or a combination of these two sets of metrics. A
primary goal is to achieve as high generalization accuracy as possible without incurring

a significant increase in the training or inference cost.

20

Generalization Accuracy. When training a deep neural network, we would like to
achieve as high as possible generalization accuracy, i.e., maximize its performance on
a data set that the neural network has not seen before. This data set is still from
the same sample space X x Y as the training data set. For instance, in our running
example of the CIFAR-10 data set, we are interested in how well a neural network can
classify images that are not present in — but are similar to those in the training data
set. To quantify the generalization accuracy of a neural network, we use a test data
set X (et = LM 2(m)} and corresponding labels Y *¢5) = {1 41 The
generalization accuracy is defined as the proportion of the test data set that is correctly

classified by the neural network:

S L(arg max(y(®) = arg max(f(z(, 8)))

ml

Acc =

Here, 1(.) is an indicator function that outputs 1 when its input is true and 0 otherwise.
We use argmax to extract the label from both the ground label vector y(® and the
prediction vector f(x(?,0). We will also refer to the above metric as the test accuracy.
The additive inverse of the generalization accuracy is called the generalization error

(also referred to as the test error).

Training Time Per Epoch. Given hardware and data set, the training time per epoch
is the amount of time it takes to complete one round of training of a neural network,

i.e., one forward and one backward pass, on the entire training data set.

Total Training Time. The total training time is how long it takes for a neural network
to converge, given the convergence criterion. We can express this time as the product

of the number of epochs it takes to converge and the time taken per epoch.

Memory Usage. The memory a given neural network requires to train is another
important metric. It is the total GPU and CPU memory needed to store the network

parameters, training data set, and intermediate feature maps.

Inference Time. Once a trained neural network is deployed on particular hardware,

the amount of time it takes to classify one data item is known as its inference time.

21

2.4 CONVOLUTIONAL NEURAL NETWORKS

Next, we describe convolutional neural networks that are widely used in computer vi-
sion. Convolutional neural networks (ConvNets) are a particular class of deep neural
networks that consider the spatial structure present in images and videos. By doing
so, ConvNets are both more efficient and accurate at classifying images when compared
with fully-connected neural networks. In particular, there are two significant ways in
which ConvNets are tailored toward images and videos. First, layers in ConvNets have
neurons arranged in three dimensions (width, height, and depth) to mimic the three-
dimensional nature of image data sets. Second, ConvNets have two characteristic layers
known as convolutional layers and pooling layers that take advantage of the fact that
images have spatially-localized structure, i.e., images are not bags of pixels but rather

that the position of pixels is important.

2.4.1 THREE-DIMENSIONAL LAYERS

Images are three-dimensional grids with spatial dimensions (width and height) and
depth (i.e., RGB values). In CIFAR-10, for example, every image has spatial dimensions
32 x 32 and a depth of 3 corresponding to the three RGB channels. ConvNets mimic
this image structure and have three-dimensional layers having width, depth, and height.
Effectively, each layer is a volume of neurons that operates on a volume of inputs and
produces a volume of outputs. The intermediate outputs in a ConvNet are also referred
to as feature maps as they capture features from images that are consequential to the

computer vision task, i.e., image classification or object detection.

2.4.2 TvyPES OF LAYERS IN CONVNETS

ConvNets are composed of four different types of layers: convolutional, RELU, pooling,
and fully-connected. Figure 2.3 shows a ConvNet with one example of each of these
layer types. Figure 2.4 depicts the VGGNet architecture (a seminal convolutional neural

network) composed of several sequences of all four layers. We describe every layer type.

22

Feature map Feature map Feature map
3x3x2 3x3x2 2x2x2

mdinQ

Input (4 x 4 x 3)

Convolutional layer RELU layer Pooling layer Fully-connected
(two 2x2 filters) (2x2) layer

Figure 2.3: Convolutional neural networks are made up of various types of layers, each
designed to serve a specific function.

Convolutional Layer. Convolutional layers have spatially connected neurons, i.e.,
neurons in a convolutional layer are only connected to a subset of neurons from the
previous layer. Every neuron in this layer has a receptive field in the form of a cuboid,
i.e., it operates on a small volume that extends through the full depth of the previous
layer. The receptive fields of different neurons can have different degrees of overlaps
between them controlled by the stride length. Every neuron computes the dot product
between its receptive field and weights, producing a single numerical value as is the case
for neurons in a fully-connected network. Typically, a convolutional layer has multiple
stacks of neurons. Every stack of neurons produces a stack of outputs. The depth of the
outputs produced is equal to the number of stacks. In Figure 2.3, the convolutional layer
has neurons with a square receptive field of size 2 x 2, strided with a stride length of one,
and there are two stacks of such neurons. Overall, this convolutional layer produces an

output layer with depth two.

RELU Layer. RELU (Rectified Linear Unit) is one of the most popular activation
function for neural networks. ReLLU outputs the input directly if it is positive; otherwise,

it provides zero as the output:

ReLU(x) = max(0,)

The RELU layer applies this function to every element in its input layer, keeping both
the spatial dimension and the depth intact.

23

224 x 224 x3 224 x 224 x64

112 x 112 x 128

56/x 56 x 256
28 x 28 x 512

X x512
14x14x512

1x1x4096 1x1x1000

=) convolution+RelLU
) max pooling
fully nected+RelLU
softmax

Figure 2.4: The VGGNet architecture is composed of a sequence of convolutional, ReLLU,
and pooling layers. The input image is successively transformed into a smaller more
semantically meaningful form.

Pooling Layer. This layer reduces the spatial dimension (width and depth) of its input
layer while preserving the depth. Sometimes, we also refer to it as the downsampling
layer. Given a pooling function, a stride length, and a spatial receptive field, the pooling
layer operates independently on every input layer’s depth. It applies the pooling function
to every box of the given receptive field strided with the given stride length. The pooling
function is a non-linear downsampling function such as average or max. Figure 2.3 shows

a pooling layer having neurons with a receptive field of size 2 x 2 and unit stride length.

Fully-Connected Layer. One or more fully-connected layers appear toward the end
of ConvNets. Every neuron in this layer connects to every neuron in the previous layer.
Each neuron has a set of associated weights (as many neurons in the previous layer).
The last fully-connected layer’s output is typically a probability distribution over labels
associated with the input data item. In Figure 2.3, the last fully-connected layer has four
neurons. Together, these neurons provide an output that maps to a discrete probability

distribution spread over four labels.

24

General Architecture of ConvNets. Typically a ConvNet architecture begins with
one or more sequences of alternating convolutional and RELU layers, each followed
by one or more pooling layers. This sequence of layers transforms the image from its
original size to a smaller size and extracts features relevant to the classification task.
Toward the end, there are one or more fully-connected layers. The last fully-connected

layer holds the scores for every label in the classification task.

Training and Deploying ConvNets.. Convolutional neural networks can be trained
in an end-to-end manner in the same way as fully-connected neural networks using

gradient descent as described in Algorithm 2.1.

2.5 DEeEP NEURAL NETWORK ENSEMBLES

Ensemble learning is a prevalent approach to improve the quality of machine learning
pipelines. The central idea is to train multiple diverse models to perform the same
task and then combine their results during inference (Dietterich 2000). For instance,
random decision forest, a popular ensemble learning algorithm, trains multiple (possibly
hundreds) of individual decision tree models using the same training data. During
deployment, the output from each of the decision trees is aggregated to provide the
final output. Over the years, researchers and practitioners have used ensembles of
virtually all machine learning algorithms to scale the capacity and accuracy of their
machine learning pipelines (Drucker et al. 1993; Dietterich 2000; Granitto et al. 2005;
Xu et al. 2014; Lee et al. 2015a; Russakovsky et al. 2015; Huggins et al. 2016).

Ensembles typically provide higher generalization accuracy than any of the individual
models they contain. Various formal justifications have been provided to explain this.
First, ensembles enrich the space of hypotheses considered and are representationally
richer (Domingos 1999). Second, when these ensembles are combined, using some form
of averaging, the models’ variation, which is an artifact of stochastic training and the

non-convex objective function, is reduced (Dietterich 2000).

Ensembles of deep neural networks are also increasingly used to scale the representa-

tional power of deep learning pipelines and improve their generalization accuracy (Huang

25

et al. 2017a; Wasay et al. 2020). They are widely used in online competitions such as
the ImageNet challenge and COCO and applications with high accuracy requirements
(Russakovsky et al. 2015; Huang et al. 2017a).

2.5.1 TRAINING DEEP NEURAL NETWORK ENSEMBLES.

There are two baseline approaches to train deep neural network ensembles depending
on whether we use the entire data set or a different sample of the data set to train every
network in the ensemble. The most prevalent method to train ensembles of neural
networks is full data training. Here, we train all ensemble networks independently using
the entire data set. This yields highly-accurate ensembles but also requires significant
amount of training time. The second method, i.e., bagging or bootstrap aggregation,
reduces the training time but comes at the cost of decrease in accuracy. Here, we train
the network on a bagged set sampled from the training data. Given n training examples,
we sample n times from it with replacement to create the bagged set. Effectively, this
produces a training set that has less unique data items when compared with the full

training data set.

For both of these methods — full data training and bagging — the individual network
training proceeds as usual (using Algorithm 2.1). Formally, this yields k& neural networks
with k different functional mappings {f1(-,01), ..., fx(-, %)}

2.5.2 DEPLOYING DEEP NEURAL NETWORK ENSEMBLES

During deployment, to classify a data item, we pass it through every network in the
ensemble. This step produces a set of outputs, one for every network in the ensemble.

These outputs are then combined to produce the final output.

Formally, any data item z(®) is passed through each of the ensemble networks, producing
k predictions {Qgi), ,@,(;)} These k predictions are then combined together through
an aggregation function (Ju et al. 2017).

Ensemble averaging and voting are two of the most commonly used aggregation func-

tions. In ensemble averaging, the individual network outputs ({gﬁ“, ey i/,(;)}) are aver-

26

aged to produce @(i), the final ensemble output for the i-th test data item.

e

k
90 =>4 /k

J=1

In voting, on the other hand, we look at the prediction of every neural network in the
ensemble and output the prediction produced by a majority of the ensemble networks

breaking ties randomly.

1, if j = mode(arg max(g\"), ..., arg max(g\"))

0, otherwise

2.5.3 DEEP NEURAL NETWORK ENSEMBLES IN PRACTICE

Various applications increasingly use ensembles of multiple neural networks to scale the
representational power of their deep learning pipelines. For example, deep neural net-
work ensembles predict relationships between chemical structure and reactivity (Agrafi-
otis et al. 2002), segment complex images with multiple objects (Ju et al. 2017), and
are used in zero-shot as well as multiple-choice learning (Guzman-Rivera et al. 2014; Ye
and Guo 2017). Further, several winners and top performers on the ImageNet challenge
are ensembles of neural networks (Lee et al. 2015a; Russakovsky et al. 2015). Ensembles
function as collections of experts and have been shown, both theoretically and empiri-
cally, to improve generalization accuracy (Drucker et al. 1993; Dietterich 2000; Granitto
et al. 2005; Huggins et al. 2016; Ju et al. 2017; Lee et al. 2015a; Russakovsky et al. 2015;
Xu et al. 2014). For instance, by combining several image classification networks on the
CIFAR-10, CIFAR-100, and SVHN data sets, ensembles can reduce the misclassification
rate by up to 20 percent, e.g., from 6 percent to 4.5 percent for ensembles of ResNets
on CIFAR-10 (Huang et al. 2017a; Ju et al. 2017).

While ensembles improve the quality of machine learning pipelines, they can also in-
crease the design and maintenance cost as we need to first design and then maintain

multiple models. Data scientists and machine learning practitioners use various strate-

27

gies to address these two challenges. To address the challenge of design cost, ensembles
in practice contain neural networks that are architecturally homogenous, i.e., they repli-
cate a single network design k times (Huang et al. 2017a). This replication eliminates
the cost of ensemble design but results in some decrease in the diversity of the mod-
els. Similarly, there are practical approaches to reduce the cost of maintaining multiple
models. The function learned from large ensembles can be transferred to smaller en-
sembles or even a single network while approximately preserving accuracy. In this way,
ensembles of neural networks help learn a good function during training which is then

transferred quickly to a more compact and manageable model (Hinton et al. 2015).

2.6 TRANSFERRING KNOWLEDGE BETWEEN NEURAL NETWORK MODELS

Transferring knowledge from one neural network to another neural network is a widely-
used technique to increase or decrease a pre-trained model’s size while retaining what
the model has already learned. For instance, when datasets become more complex,
machine learning practitioners might increase the effective complexity of the model and
use knowledge transfer techniques to ensure that the enlarged model contains similar
knowledge as the already-trained or deployed model. In addition to this, during transfer
learning, data scientists may be interested in initializing a new neural network structure
by using the knowledge from a pre-trained model from one task and then further train
it for a new task. Knowledge transfer is used to accelerate network architecture search
(Weill et al. 2019; Gordon et al. 2018), continuously expand neural networks to incor-
porate new data (Mitchell et al. 2018), and enable training of deeper neural networks

(Romero et al. 2015; Simonyan and Zisserman 2015).

There are various techniques to transfer knowledge between two neural networks. They
can be classified based on whether the knowledge transfer happens through further

training or network transformation.

28

2.6.1 KNOWLEDGE TRANSFER THROUGH TRAINING

In the first class of approaches, the knowledge from a teacher network is transferred
to a student network by training it (on possibly a transfer set) to mimic the teacher
network (Hinton et al. 2015). This approach, known as knowledge distillation, trains
the student network using the teacher network’s probability distribution as the target.
Suppose the labels corresponding to the transfer set are known. In that case, the loss
function is a weighted sum of the empirical loss (i.e., the loss on the transfer set labels)
and the target loss (i.e., the loss on the probability distribution produced by the teacher

neural network model).

Formally, let zgl) be the vector of outputs produced by the last layer of the teacher

neural network on the [-th data item from the transfer set. Let zgl) be the vector of
outputs produced by the last layer of the student neural network. The total number of

items in the transfer set are m*. Then, the distillation loss Jp is defined as follows:

Jp =" —p(z{),T) log(p(], T))

In this equation, p is the softmax probability scaled by a temperature factor T'. This

temperature factor controls how sharp or spread out the probability distribution is.

exp(z;/T)

Zi,T =
PET) = S (e T)

The overall loss, is a weighted combination of the distillation loss and the empirical loss

Jg of the student network.

JZOJ-JD—F(l—Ct)'JE

This loss is differentiable with respect to the student network parameters and training

proceeds as usual using gradient descent as described in Algorithm 2.1.

Knowledge Distillation is a versatile technique and can transfer knowledge from any

29

. - - /%
\ Q\ | \ O\
- — @ : . —
/ Q/ | / of,
(a) Deeper networks | (b) Wider networks

Figure 2.5: Function preserving transformations can be used to increase the depth and
width of a given network, while preserving its function.

network to any other network. In past research, for instance, Knowledge Distillation
has been used to incrementally train deep learning models and capture the knowledge
from a large ensemble model into a smaller single model (Romero et al. 2015; Simonyan
and Zisserman 2015). Knowledge distillation, however, requires extra training, and the

knowledge is transferred only in an approximate way to the student network.

2.6.2 KNOWLEDGE TRANSFER THROUGH NETWORK TRANSFORMATION

The second class of techniques to transfer knowledge does not require any extra training
and ensures that the exact function gets transferred from the teacher to the student
neural network (Chen et al. 2016). However, this approach lacks versatility and can
only be used to grow the network’s size, i.e., the student network needs to have the
same or higher width, depth, and convolutional filter sizes compared to the teacher
network. Overall, this approach, known as function-preserving transformation, expands
the network by adding new parameters (increasing its width or depth) and ensuring

that the newly-added parameters cause no change to the network’s function.

We discuss three classes of function-preserving transformations as shown in Figure
2.5: (i) Net2DeeperNet that increases the depth of the network (Figure 2.5(a)), (ii)
Net2WiderNet that widens the network layers (Figure 2.5(b)), and (iii) Net2WiderFilters
that grows the size of convolutional filters (Figure 2.5(c)).

30

Net2DeeperNet. This transformation increases the depth of the network by adding
a new layer to the network. It initializes the weights of the newly-added layer with
identity matrices such that the input from the previous layer is passed unchanged to

the next layer.

Specifically, this transformation replaces a layer h) = qﬁ(h(i_l), W(i)) with two layers
R = o(U, ¢(h1 W®)). The parameters of the new layer U® are initialized
with identity and this transformation is only applicable when ¢(I,v) = v for any vector
v. This holds for many widely-used layers such as convolutional layers, fully-connected
layers, and ReLU layers. While this transformation cannot be exactly applied to layers
having sigmoid or tanh activation functions, it has been shown empirically that the

resultant transformation still provides some degree of function preservation.

Net2WiderNet. This transformation replaces an existing layer with a wider layer,
i.e., a layer with more neurons. In the case of convolutional neural networks, this means

a layer with more convolutional filters.

Suppose we have two layers ¢ and ¢ + 1 such that layer i« has m inputs and n outputs,
whereas layer ¢+ 1 has n inputs and p outputs. The associated weights W@ and Wi+
belong to R™*™ and R™*P respectively. Net2WiderNet allows us to replace layer ¢ with
a layer that has ¢ > n outputs. To do this, first, we replace W@ and wWi+D by U®
and U+ respectively. U is constructed such that the first n columns are exactly
the same as W@ and the remaining columns (n 4 1 through q) are chosen randomly
from the first n columns. To neutralize the effect of this replication, weights in w i+
corresponding to a replicated column in W@ are scaled down by its replication factor.

More specifically the following function enables this transformation:

(i) _ pr® (i+1) _ 1 (i+1)
Ui =Wiotr Yin = @ = g1 96
/ < n
Where: g¢(j) = J 7=
random sample from {1,2, ... n} j >n

31

Further Training Transformed Networks. Once we apply one or more of these
transformations to a pre-trained network, it has the same function as before but more
parameters we can further train. We add random noise to perturb these new parameters
to break symmetry and avoid zero-initialized weights. The network is then trained as

before on the training data set.

32

Related Work

Our work on Computation-Cautions Machine Learning Systems is related to various
research directions from data systems and machine learning research communities. In
particular, we position our work with respect to systems and techniques that improve
various stages of machine learning pipelines, specifically those that (i) improve data
exploration, (ii) enable better understanding of deep learning model design, and (iii)

accelerate training and deployment of deep learning models.

3.1 EFFICIENT DATA EXPLORATION

Data exploration is the first step in any data science pipeline, where a data scientist
is interested in understanding various properties of the data set. During exploration,
a data scientist is looking for interesting patterns in massive data sets that are not
known a priori (Idreos 2013; Wasay et al. 2015). This stage presents unique challenges
of scalability, efficiency, and usability. We discuss research directions that tackle these
challenges and explain how our work in Data Canopy complements and advances state-

of-the-art data exploration techniques.

33

3.1.1 DATA EXPLORATION AND STATISTICS

Statistics play an important role in data exploration as they summarize data and help
uncover the relationship between different attributes in the data set. As such, systems
used for exploratory analysis, including data systems, support the computation of statis-
tics. These systems also use statistics to inform various internal optimization processes.
As such, existing research directions design ways to utilize statistics and improve and

enhance their computation.

STATISTICS IN DATA SYSTEMS

Statistics are widely used within data systems to analyze data and tune various internal
components of the database system: Data systems provide support to compute differ-
ent statistics in the form of aggregate operations such as AVG and CORR (Zhao et al.
1997). Also, query optimizers estimate query cardinality by using histogram statistics
(Chaudhuri and Narasayya 1998). Recent approaches employ statistics for data inte-
gration (Halevy 2004; Dalvi and Suciu 2005), time series analysis (Sathe and Aberer
2013; Zhu and Shasha 2002), and in-database learning (Schleich et al. 2016).

Data Canopy vs. Statistics in Data System. Despite the widespread use of statis-
tics in data systems, a framework to synthesize and reuse various statistical measures
during exploratory statistical analysis does not exist. Data Canopy introduces such a
framework, which replaces ad hoc calculation of statistics and brings opportunities to
synthesize statistics from basic aggregates efficiently; compute and cache these basic ag-
gregates ahead of time, and employ them to accelerate exploratory statistical analysis.
Statistics in Data Canopy, primarily computed for exploratory analysis, can also be used
within the data system for other tasks such as query optimization, data integration, and

data discovery and mining.

34

FAsT COMPUTATION OF STATISTICS

The widespread use of statistics in various systems across the board has led to research
on calculating fast statistics on large data sets. One set of research directions reduces
the amount of data touched to compute statistics while providing accuracy guarantees:
Robust sampling techniques are applied to trade accuracy for performance (Gibbons
et al. 1997; Chaudhuri et al. 1998, 2004; Cormode and Muthukrishnan 2005; Wu et al.
2010) and techniques based on discrete Fourier transform approximate all-pair correla-
tions for time series (Mueen et al. 2010). Other research directions present solutions to
computing statistics at scale in distributed settings: Cumulon is an end-to-end system,
which optimizes the cost of calculating statistics on the cloud (Huang et al. 2013). Simi-
larly, some research directions optimize the calculation of various statistical measures by
correctly partitioning data in distributed settings (Cormode and Muthukrishnan 2005;
Alvanaki and Michel 2014).

Data Canopy vs. Fast Statistics. All these approaches innovate on how statistics
are computed. Therefore, these approaches are compatible with Data Canopy: Data
Canopy can adopt one or even multiple approaches for computing basic aggregates.
For example, in distributed settings, Data Canopy can incorporate the aforementioned
partitioning techniques to ensure that relevant data is stored at local nodes. Similarly,
the computation of statistics in Data Canopy can be done approximately. The pri-
mary advantage of combining Data Canopy with these approaches is that Data Canopy
synthesizes statistics from basic aggregates and reuses these basic aggregates. In the
presence of workloads exhibiting high locality and repetition, this synthesis significantly

reduces data movement.

3.1.2 NOVEL DATA EXPLORATION PARADIGMS

Data Exploration has received a lot of research interest within the data systems com-
munity (Idreos et al. 2015; Wasay et al. 2015).

First, there are exploratory interfaces that steer data scientists through the data space

by providing both insights and further queries: Recent approaches discover relevant

35

data objects based on relevance-feedback (Dimitriadou et al. 2014) or by performing a
variety of faceted search (Drosou and Pitoura 2013); Query recommendation systems
help data scientists ask relevant questions based on the data set and their past interests
(Yu et al. 2010; Abouzied et al. 2012; Shen et al. 2014).

Second, there is research to enable wvisual analytics that reduce the cognitive effort
of data exploration by augmenting data systems with visual and gestural interfaces:
Various approaches enable data scientists to visually browse data sets (Stonebraker and
Kalash 1982; Stolte et al. 2002; Wu et al. 2014); Recommendation systems automatically
select an appropriate visualization given a data set (Key et al. 2012); DbTouch (Liarou
and Idreos 2014) and GestureDB (Nandi 2013) develop database kernels and languages
that fingertips can control; Visualization languages enable declarative definition of data

visualizations (Hanrahan 2006).

Finally, approzimate query processing provides estimated answers to exploratory queries
in orders of magnitude less time by touching a fraction of base data. There are also
proposals to use samples of the data set to answer queries while satisfying a user-defined
accuracy (Gibbons et al. 1998; Sidirourgos et al. 2011; Agarwal et al. 2013).

Data Canopy and Novel Data Exploration Paradigms. Data Canopy as a frame-
work for exploratory statistical analysis is complementary to all efforts above. None of
the works described above are about making the process of computing statistics more
interactive. Data Canopy can help make any process that contains iterative computa-
tion of statistics more interactive. Similarly, recommendation systems can use various
descriptive and dependence statistics for faster and more informed recommendations.
Data Canopy can also benefit from many of these research directions in the general field
of data exploration. For instance, Data Canopy can use sampling and approximation

techniques to create a smart cache with approximate guarantees.

3.1.3 Data CUBES

Data cubes, widely applied in mining data warehouses, store data aggregated across
multiple dimensions (Gray et al. 1997; Mumick et al. 1997). Operators like roll-up,

slice, dice, drill-down, and pivot allow data scientists to summarize or further resolve

36

information along any particular dimension in the data cube. Various techniques to
improve data cube performance have been studied: Sampling and other approximation
techniques are used to reduce both the time required to construct the data cube and
answer queries from it (Barbara and Sullivan 1997; Li et al. 2008; Xie et al. 2016).
Some approaches only partially materialize data cubes (Dyreson 1996; Xin et al. 2003;
Feng et al. 2004), whereas others present strategies to build them adaptively (Beyer
and Ramakrishnan 1999), and in parallel settings (Chen et al. 2006). One line of
work proposes a simplified and flexible version of the data cube concept in the form of
small aggregates (Moerkotte 1998). Furthermore, recent research designs data cubes for
exploratory data analysis: Some research directions visualize aggregates stored in data
cubes (Kahng et al. 2016), others use them for ranking (Wu et al. 2008) as well as for

interactive exploration (Sarawagi and Sathe 2000).

Data Canopy vs. Data Cubes. Data cubes do not support a wide range of statistical
measures. Specifically, they have no support for multivariate statistics such as correla-
tion or covariance. Also, data cubes come with a high preprocessing and memory cost
resulting from calculating and storing aggregates grouped by multiple dimensions. In
contrast, Data Canopy is lightweight and can reuse and synthesize an extendible set of
statistics using a relatively small set of basic aggregates. Furthermore, slices obtained
from data cubes in OLAP settings can be explored using Data Canopy. Once data
scientists have developed an understanding of the data set, they can construct more
complicated OLAP structures or run more detailed analytics on features and subsets of
data that they have identified to be of interest. This approach is more efficient compared

to building heavy OLAP structures upfront for exploratory statistical analysis.

3.1.4 QUERY CACHING AND MATERIALIZED VIEWS

Query result caching enables database systems to reuse results of past queries to speed
up future queries (Hellerstein and Naughton 1996). Most relevant to Data Canopy
are approaches that enable reuse across different ranges by breaking down queries and
caching query results (Keller and Basu 1996; Deshpande et al. 1998). More recently, dif-
ferent approaches prefetch both data and query results to accelerate the process of data

exploration. Forecache breaks the data down into regions called tiles and prefetches

37

them based on a data scientist’s exploration signature (Battle et al. 2016). Similar
caching and prefetching strategies have also been proposed for the process of data visu-
alization (Liu et al. 2013).

All relational databases, such as MonetDB and Postgres, provide support for storing
results of previously executed queries to speed up future queries in the form of mate-
rialized views (Chirkova and Yang 2011). Recent research explore various methods to
figure out what materialized views are selected: There are proposals to use stochastic
optimization as well as evolutional algorithms to decide on what views to materialize
automatically (Kumar and Kumar 2018; Gosain and Sachdeva 2019; Sohrabi and Az-
gomi 2019). In addition to this, there is research on how to efficiently maintain and
store the metadata resulting from materialized views, including incremental computa-
tion, proper partitioning in a distributed setting, and extending to key-value stores (Du
et al. 2017; Ahmed et al. 2020; Adler 2020). Finally, there is a recent proposal to replace

materialized views with learned models (Zou 2021).

Data Canopy vs. Query Caching. Data Canopy draws inspiration from these ap-
proaches and takes a step further: In addition to decomposing ranges, Data Canopy
decomposes statistical measures into a set of basic aggregates that can be reused be-
tween them. As such, Data Canopy can synthesize descriptive and dependence statistics
directly from this library of basic aggregates. Additionally, Data Canopy advances this
research direction by providing a smart cache framework that can compute and maintain
a library of basic aggregates that can be used as building blocks for various statistical

measures and machine learning algorithms.

Data Canopy and Materialized Views. It is possible to use materialized views to
implement Data Canopy in relational database systems. In particular, we can store basic
aggregates in the form of materialized views, i.e., aggregates such as COUNT, SUM,
etc., over the base data. To fully support Data Canopy in relational database systems
through materialized views, we will need to implement: (i) a function that intercepts
user queries and decomposes statistics into corresponding basic aggregates and maps
them to materialized views, (ii) a function that executes the creation of materialized
views that we have not yet created, (iii) a meta-data table that stores what materialized

views we have already created, and (iv) a function that utilizes information from the

38

meta-data table to synthesize results (from existing materialized views) instead of going
back repeatedly to the base data. We can further optimize the meta-data table to take
the form of segment trees, i.e., the range composable data structures that Data Canopy

uses to store and retrieve basic aggregates in logarithmic time.

Another method to incorporate Data Canopy into relational database systems through
materialized views would be to reimplement materialized views so that they store sta-
tistical queries in the form of basic aggregates, i.e., instead of storing a single number
corresponding to a statistic on the data set, the corresponding basic aggregates are
stored and maintained. Overall, Data Canopy brings an opportunity to reuse work

across different materialized views to relational database systems.

3.1.5 INCREMENTAL STREAM PROCESSING

Similarly, in streaming scenarios, incremental query processing decomposes data streams
into smaller chunks and runs queries on these chunks: Window-based approaches par-
tition data and queries such that future windows can make use of past computation
(Chandramouli et al. 2014; Chandrasekaran et al. 2003; Ghanem et al. 2007; Liarou
et al. 2013). Specific approaches present strategies to incrementally monitor time-series
data (Zhu and Shasha 2002) and update materialized views (Griffin and Libkin 1995).

Data Canopy and Stream Processing. Data Canopy is inspired by these approaches
and is readily applicable in streaming settings as it can be constructed in a single pass
over the data set. When processing massive streams with limited memory, Data Canopy
can function as a synopsis for answering a configurable set of statistical queries for

exploratory statistical analysis. This synopsis is constructed and updated incrementally.

3.2 UNDERSTANDING DEEP LEARNING MODEL DESIGN

Model design is the next stage of data science and machine learning pipelines. Re-
searchers have extensively studied deep learning model design from various angles. Re-
cent work conducts large-scale experiments to derive guidelines to enable better model

design. In the absence of a robust theoretical understanding of the design space, model

39

designers can use these guidelines to bootstrap their design process. Here, we review
research directions connected to Deep Collider, our framework that enables a principled
and holistic understanding of deep learning ensembles’ model design space. We position
Deep Collider against existing empirical research on designing single network models,

ensembles of models, and the design space between these two alternatives.

3.2.1 SINGLE NETWORK DESIGN SPACE

Past empirical studies have progressively disentangled the contribution of three design
choices — depth, width, and convolution operators — to the accuracy of convolutional
networks (Ba and Caruana 2014; Eigen et al. 2013; Novak et al. 2018; Urban et al. 2016;
Zhao et al. 2018). The methodology is to synthesize neural network architectures that
can isolate the effect of these design choices and, then, conduct large-scale experiments
over various types of architectures, data sets, and hyperparameter configurations. This
methodology has lead to several insights on how to design single neural network models:
Researchers have shown that depth is crucial as it increases non-linearity in the network
(Ba and Caruana 2014). Similarly, research establishes that the convolution operator is
essential to achieving good generalization accuracy (Urban et al. 2016). The number of
filters per layer, on the other hand, is shown to be of little consequence as long as it is
above a threshold (Eigen et al. 2013).

Single Network Design Space and Deep Collider. Our study pushes this line of
research forward in two significant ways: First, we consider the dimension of ensembling
and compare it with a single deep network under a parameter budget. This analysis
provides model designers with a way to reason about using an ensemble of deep neural
networks in their pipeline. Second, in addition to the metric of generalization accuracy,
we also include training time, inference time, and memory usage. These metrics are of
increasing importance as deep learning models are trained and deployed in heterogenous

settings with varying amounts of computational resources.

40

3.2.2 ENSEMBLE DESIGN SPACE

Closely related are recent studies that compare the generalization accuracy of ensembles
of neural networks with single networks (Russakovsky et al. 2015; Lee et al. 2015a; Ju
et al. 2017). These studies, however, compare the generalization accuracy of single deep
networks with ensembles, where each network in the ensemble has the same size as the
single deep network, i.e., the number of parameters in the ensemble are significantly
higher as compared to the single network. For instance, one such study compares an
ensemble of four ResNets-110 with a single base model (Ju et al. 2017). The consensus
from these studies is to use ensembles when the goal is to achieve high accuracy without
much regard to training cost, inference time, and memory usage, e.g., for competitions
such as COCO and ImageNet.

There are recent studies that make this comparison between ensembles and single net-
work models under a parameter budget. The major conclusion is that beyond a specific
budget, ensembles can provide better accuracy than single networks (Chirkova et al.
2020; Kondratyuk et al. 2020). This work, however, considers only the metric of gen-
eralization accuracy and explores a minimal design space — two different classes of

convolutional architectures with a single depth.

Ensemble Design Space and Deep Collider. Our study, in contrast, compares
single networks to ensembles under a fixed parameter budget, which is crucial for a fair
comparison as the training and deployment cost depends on the number of parameters.
Then, we investigate how this apples-to-apples comparison evolves as we isolate and vary
the number of networks, the depth per network, and the number of filters per network
in the ensemble. As such, our work significantly extends the existing line of inquiry,
not just answering the question of how a single network compares with a K-network
ensemble (with K times as many parameters), but also addressing whether an ensemble

with the same number of total parameters as a single model can be better and when.

Compared with recent studies that make this comparison under a parameter budget,
Deep Collider brings a distinctive advantage: We conduct this analysis while considering
a holistic set of metrics that include resource-related metrics such as training time,

inference cost, and memory usage. All these metrics are critical for practical applications

41

(Sze et al. 2017a). Furthermore, to provide reliable guidance to a model designer,
a robust assessment must consider a wide range of architectures and model sizes with
various depth and width configurations. This consideration is critical, primarily because
varying just the width of convolutional networks in isolation, as done by recent studies
(Chirkova et al. 2020; Kondratyuk et al. 2020), is known to be far less effective to

improve accuracy (Eigen et al. 2013; Ba and Caruana 2014).

3.2.3 THEORETICAL FRAMEWORKS

Researchers are gradually developing theoretical frameworks to understand and explain
various deep learning models (Arora et al. 2018; Eldan and Shamir 2015; Lu et al. 2017,
Mhaskar et al. 2016; Telgarsky 2016). Theoretical frameworks in deep learning are
motivated by the need to explain and generalize empirical observations. For instance,
after empirical research established that depth is vital to the generalization accuracy of
neural networks, a theoretical framework was recently developed to explain the power
of depth (Eigen et al. 2013; Eldan and Shamir 2015).

Theoretical Frameworks and Deep Collider. Our study uncovers various observa-
tions about the behavior of training a given parameter budget in a single deep network
and an ensemble of multiple networks. It builds the basis for enabling future theoretical

frameworks to capture the relationship between ensembles and deep networks.

3.3 EFFICIENT DEEP LEARNING

As deep learning pipelines become more and more widespread, an ecosystem of research
has emerged to improve their efficiency targeting the training of individual neural net-
works. Various algorithmic and system techniques target fundamental bottlenecks in
the training process such as gradient descent and matrix operations (Niu et al. 2011;
Brown et al. 2016; Li et al. 2019b,a): Various research directions improve parallelism by
introducing asynchrony in updating weights during backpropagation. Other research
directions propose adaptively tuning training hyperparameters (Bottou et al. 2016). In

addition to these, systems researchers develop techniques to reduce data movement and

42

memory overhead. Approaches include using low-precision to reduce the amount of
data touched (De Sa and Feldman) and efficient encoding of activations during training
(Jain et al. 2018). Finally, specialized hardware is being developed both in industry
and research labs to improve performance, parallelism, and energy consumption of the

training process (De Sa and Feldman; Prabhakar et al. 2016; Wang et al. 2020).

MotherNets vs. Efficient Deep Network Training. All techniques to improve
upon training efficiency of individual neural networks are orthogonal to MotherNets
and in fact directly compatible. This is because MotherNets does not make any changes
to the core components of the training process of each individual network i.e., forward
pass and back propagation. In our experiments, we do utilize some of the widely applied
training optimizations such as batch-normalization and early-stopping. The advantage
that MotherNets bring on top of these approaches is that we can now reduce the total
number of epochs that are required to train an ensemble. This is because a MotherNet

will train for the structural similarity present in the ensemble once.

3.4 FAST ENSEMBLE TRAINING AND DEPLOYMENT

In addition to methods to improve general training of deep neural networks, techniques
have also been introduced to accelerate neural network ensemble training. Fast ensemble
training techniques fall under three different categories: (i) Techniques that generate
ensembles by training a single network, (ii) Techniques that implicitly or explicitly share
parameters between training of various ensemble networks, and (iii) Techniques that use

knowledge distillation to bootstrap the ensemble training process.

3.4.1 GENERATING ENSEMBLES FROM SINGLE NETWORKS

The first class of techniques we discuss generates a target neural network ensemble by
training just a single neural network instead of training every network in the ensemble.
Overall, these approaches can train an ensemble in an amount of time comparable
to the time it takes to train a single network model. However, this improvement in

training time comes at the cost of reduced accuracy compared to an approach that trains

43

every network in the ensemble separately. This class of techniques includes Snapshot

Ensembles and Fast Geometric Ensembles.

Snapshot Ensembles. Snapshot Ensembles train a single network and use its param-
eters at k different points of the training process to instantiate k networks that will
form the target ensemble (Huang et al. 2017a). Snapshot Ensembles vary the single
network’s learning rate cyclically, forcing it to visit several local minima. In particular,
Snapshot Ensembles use cyclical cosine annealing to vary the learning rate: Every cycle
starts with a large learning rate that is annealed to a lower learning rate. The large
learning rate dislodges the neural network model from its current local minima, whereas
the lower learning rate enables it to visit a well-behaved new local minima. At every lo-
cal minima, Snapshot Ensembles save a copy of the single network’s parameters. These

neural network copies function as different members of the generated ensemble.

Fast Geometric Ensembles. Fast Geometric Ensembles, closely related to Snapshot
Ensembles, is another approach to generate ensembles from the learning trajectory of a
single model (Garipov et al. 2018). Fast Geometric Ensembles also train a single neural
network architecture and saves the network’s parameters at various training trajectory
checkpoints. Instead of using cosine annealing, Fast Geometric Ensembles use a cyclical
geometric learning rate to explore various local minima in the neural network’s loss

surface, saving a copy of the network parameters at every minima.

MotherNets vs. Fast Ensemble Generation. We draw motivation from this line
of work; however, in contrast to these approaches that generate ensembles where mem-
bers have a monolithic architecture, MotherNets accelerate training of large ensembles
with diverse neural network architectures enabling structural diversity. Furthermore,
these approaches can all be used in conjunction with MotherNets to generate additional

ensembles from different neural network architectures.

3.4.2 TRAINING ENSEMBLES BY PARAMETER SHARING

We discuss the next set of techniques to reduce ensemble training and deployment time

by sharing parameters between different networks in the ensemble. This sharing can

44

happen explicitly, as is the case with TreeNets, or, in the case of Dropout and Pseudo-

ensembles, this sharing can happen implicitly.

Explicit Sharing: TreeNets. Given a neural network ensemble, TreeNets trains
the parameters of the first few (two to four) layers in a shared manner (Lee et al.
2015b). Specifically, TreeNets combine the initial few layers of various networks in the
given ensemble to create a network that branches into k sub-networks (where k is the
number of networks in the ensemble) after the first few shared layers. Effectively every
sub-network functions as a separate member of the target ensemble. This network
with multiple branches, called the TreeNet, is then trained in an end-to-end manner
minimizing a composite loss function that consists of (i) the canonical empirical loss

and (ii) a regularization term that induces diversity between different sub-networks.

MotherNets vs. TreeNets. MotherNets is different from TreeNets in two regards.
First, MotherNets does not restrict the size and architecture of models in the ensemble,
i.e., there is no requirement for initial layers to have the same structure (as is the
case with TreeNets). In other words, MotherNets can train an ensemble with arbitrary
size and containing networks with diverse architectures. Second, MotherNets train the

ensemble in two phases that explicitly first lower bias and then create diversity.

Implicit Sharing. As opposed to the explicit sharing of parameters in the initial layers
of TreeNets, various existing approaches create many networks with shared weights dur-
ing training and implicitly ensemble them during inference. These techniques proceed
by zeroing out a random subset — individual nodes, connections, and complete layers
— of a network during every round of mini-batch training. During inference, these ap-
proaches scale every part of the trained network by its probability of surviving during
training (Wan et al. 2013; Srivastava et al. 2014; Singh et al. 2016; Huang et al. 2016).

MotherNets vs. Pseudo-Ensembles. MotherNets capture the structural similarity
in an ensemble, where members have different and explicitly defined neural network
architectures in the form of MotherNets. After training for this similarity, we transfer
well-trained parameters to all ensemble networks that are further trained. Overall,

this enables us to combine well-known architectures within an ensemble effectively.

45

Fast High Diverse Large

training accuracy architecture ensemble size
Full data X v X
Bagging ~
Knowledge Distillation ~
TreeNets ~
Snapshot Ensembles v
Fast Geometric Ensembles v
MotherNets

NN AN
WX X X NN
X X X X X

«\

v

Table 3.1: Existing approaches to train ensembles of deep neural networks are limited
in speed, accuracy, diversity, and size. MotherNets overcomes all these shortcomings.

Furthermore, implicit ensemble techniques, for instance, Dropout and Swapout, can be
used as optimizations to further improve upon the generalization accuracy of individual

networks trained through MotherNets (Srivastava et al. 2014; Singh et al. 2016).

3.4.3 TRAINING ENSEMBLES BY KNOWLEDGE DISTILLATION

Knowledge Distillation provides a middle ground between separate training and en-
semble generation approaches (Hinton et al. 2015). Knowledge Distillation trains an
ensemble in two steps: First, it trains a large generalist network and then distills its
knowledge to an ensemble of small specialist networks that may have different archi-
tectures (by training them to mimic the probabilities produced by the larger network)
(Hinton et al. 2015; Li and Hoiem 2017).

MotherNets vs. Knowledge Distillation. The major drawback of using Knowledge
Distillation to train ensembles is that distilling knowledge still takes around 70 percent
of the time needed to train every neural network from scratch. Even then, the ensemble
networks are still closely tied to the same large network that they are distilled from.
The result is significantly lower accuracy and diversity when compared to ensembles
where every network is trained individually (Hinton et al. 2015; Li and Hoiem 2017).
MotherNets, on the other hand, avoids this training cost by hatching the ensemble
networks through rapid function-preserving transformations. Once the networks have

been hatched, they are trained independently, allowing the hatched networks to explore

46

a different solution space than that of their MotherNet. Overall, this results in better

accuracy and faster training as compared to training via Knowledge Distillation.

Table 3.1 provides an overall comparison between MotherNets and all other fast ensem-
ble training approaches. All other approaches lack in one or more of the three dimensions
of speed, accuracy, diversity, and scalability. MotherNets, on the other hand, is the first
general purpose fast ensemble training approach that extends to ensembles of diverse
neural network architectures while providing high accuracy and low training time. As

such it enables training of large ensembles consisting of multiple single neural networks.

47

Data Canopy: Accelerating Exploratory Data
Analysis

We now present Data Canopy in detail. Data Canopy enables data scientists to perform
exploratory statistical analysis without having to repeatedly scan the entire base data.
The main idea is that Data Canopy breaks statistics down to basic aggregates. It
caches and manages a library of basic aggregates so that incoming queries may use
it to synthesize different kinds of statistics. Data Canopy can compute the library of
basic aggregates in a single offline pass over the data. For dynamic data exploration
scenarios with little idle time, Data Canopy incrementally computes the library of basic

aggregates during query processing.

4.1 EXAMPLE: QUERY PROCESSING IN DATA CANOPY

Before we discuss the design of Data Canopy, we motivate and provide the core intuition
with the help of an example. Consider the hourly temperature measurements collected
by the National Centers for Environmental Information (NCEI) (nce 2016). On this

data set we build an instance of Data Canopy that is configured to work with three

48

Compute, decompose, and store o Reuse

Query 1: Touch base data and store aggregates in Data Canopy Query 2: Reuse across ranges Query 3: Reuse across statistics

ce{Yuml fEE N e (Yt /2 e\ |/ e
ke{o,1...,.728}} [Data | ke{(},I...,?ZS}

Lo s 4
r= {ﬂ(f,k +ti)lk € {0,2,4, .., 128}}

o= { (g o ttame) ~ (15 o tham)

13
1 ,
ry = {m Z ol €40,1,..511}
=0 k€ {0,1,...,25}}

Figure 4.1: An example of queries that can reuse computation and data access through
Data Canopy.

univariate statistics: mean, variance, and standard deviation. Figure 4.1 shows how
Data Canopy processes a series of queries over this data set without having to always
check the base data.

Query 1: The data scientist requests mean temperatures for each day. Data Canopy
is initially empty i.e., there are no basic aggregates to utilize. For this query Data
Canopy has to access base data and compute the daily mean temperatures (using 24
observations for each calculation). Data Canopy takes this opportunity to compute
and store two types of basic aggregates: (1) basic aggregates that are immediately
needed to synthesize statistics for the current query, and (2) basic aggregates that are
not immediately needed, but can be computed from accessed data and then reused by
other statistics. These basic aggregates are always maintained at a fixed granularity of
a chunk. For ease of presentation, the chunk size is set to 12 in this example, i.e., one
chunk corresponds to twelve hours (in practice Data Canopy autotunes the chunk size
as we will discuss later on). The basic aggregates resulting from this query are shown
under Query 1 in Figure 4.1. For every chunk of size 12, Data Canopy stores the set of
sums (t°), to be used for the current query, and the set of sums of squares (¢°¢), that

may be used by future queries (for example for standard deviation and variance).

Query 2: The data scientist requests mean temperatures for each week. This time the
data scientist asks for the same statistic as requested in Query 1 but at a different
granularity (weekly instead of daily). As shown under Query 2 in Figure 4.1, there is no
need to access the base data again. Data Canopy already contains t®; the sums of hourly
temperatures for every 12 hours. It sums up 14 consecutive values of ¢t° to synthesize

the result for each week.

49

Query 3: The data scientist requests variances in temperature for every two weeks. This
time the data scientist asks for both a different statistical measure and at a different
granularity (biweekly instead of weekly or daily). As shown under Query 3 in Figure
4.1, Data Canopy synthesizes statistics from basic aggregates, again, without accessing
the base data. The variance of a set of observations x is given by Equation 4.1. Data

Canopy thus uses t° and t*® to synthesize the result set r3 for this query.

(T - GE)

=1 =1

=

Other Queries. Similar to the above scenarios, once Data Canopy stores the set of sums
t? for every 12 hours, and the set of sums of squares t* for every 12 hours, it can reuse

these basic aggregates in four different types of query scenarios:

i. Across different data ranges: daily mean of the first three days, daily mean of the

last four days, etc.
ii. Across different data granularities: weekly mean, biweekly mean, etc.
iii. Across different statistical measures: daily standard deviation, daily variance, etc.

iv. Across any combinations of i, ii, and iii: weekly standard deviation, monthly vari-

ance, weekly range etc.

4.2 DESIGN CONCEPTS

We now describe the core design concepts in Data Canopy that enable the aforemen-

tioned degree of reuse.

Data and Query Range. We will use the concepts of data and query range throughout
our discussion. We define a data range as a set of consecutive data items from a column
or a set of columns. A query range is the data range over which a query requests

statistical measures.

20

Statistics | Basic Aggregates |

St | Yay | Yy

Type Formula

avg

rms \/%ZxQ

var -
std \/Zx —n-avg(z)2
kur L z(“z;z‘ggg@) -3
cov Zﬂ;z Vi Zw;Zyi
slr %@’g), avg(x), avg(y)
corr D TiYi— Y T Yi

\/”2302—(2% \/nzyz Zyz)

Table 4.1: Data Canopy synthesizes statistics from a library of basic aggregates.

Basic Aggregates. Data Canopy breaks statistical measures into basic primitives. We
call those primitives basic aggregates. We define a basic aggregate over a data range as a
value that is obtained by first performing a transformation 7 on every data item in that
data range and then combining the results using an aggregation function f. Formally,
for a given data range X, (with elements x;) a basic aggregate can be represented as
f({7(x;)}). In our running example, sum of squares t** can be represented as f({7(z;)})

= Y, 22, where 7(x;) = 27 and f is the sum function.

The transformation 7 can be any operation on an individual data item. However, the
aggregation function f has to be commutative and associative i.e., we should be able
to break down and combine basic aggregates between sub-ranges (partitions of the data
range). Formally, for any partition {Xi, X, ... X, } of a data range X, the following
should hold:

FX) = F{f(X0), f(X2) ... f(Xn)}) (4.1)

For instance, this property is satisfied by min, max, count, sum, and product functions

on any given data range, whereas the median function does not satisfy this property.

o1

Decomposing Statistics. Data Canopy defines a statistic S over a data range X as

a function F of different basic aggregates:

S(X) = F{f(r({zi})})

Figure 4.3 shows how statistic S (with function F) is mapped to two basic aggregates.
The rationale behind representing statistics as a function of basic aggregates is twofold:
First, various statistical measures share — and can reuse — basic aggregates. For instance
mean, variance, and standard deviation all require the basic aggregate of sum over the
target data. Second, a given basic aggregate over a certain data range (as a result of the
property in Equation 4.1) can be further decomposed into sub-ranges. These sub-ranges
can be combined together to synthesize that basic aggregate over any data range that

contains those sub-ranges.

Table 4.1 shows how Data Canopy breaks down a set of widely used descriptive and
dependence statistics into five basic aggregates. Effectively, Data Canopy is a smart
cache. An alternative approach could be that we cache the result values of each indi-
vidual statistic. However, we then lose the ability to reuse computation and data access
between different statistics, despite clear overlaps. For instance, if instead of caching
each of the basic aggregates corresponding to correlation, we cached just the final value,
we will not be able to use that value to synthesize any of the other statistical measures
mentioned in Table 4.1. Instead, we would have to access the data set again to compute

the individual statistics.

In addition to the examples in Table 4.1, geometric mean (7(x) = z, f(X) = [[, zs),
harmonic mean (7(z) = 1, f(X) = 3, z;) and other descriptive and dependence statis-
tics can be synthesized from basic aggregates. Over 90 percent of statistics supported by
NumPy and SciPy (num 2013), and over 75 percent of statistics supported by Wolfram
(Wol 2017) can be expressed in the aforementioned form i.e., they can be decomposed

and expressed in terms of 7, f, and F'.

Chunks. Data Canopy maintains basic aggregates at the granularity of a chunk —
a logical partition of data that comprises of consecutive values from a data column.

For every chunk, Data Canopy maintains a single value per basic aggregate type. In

52

our example of hourly temperature data, a chunk size of 12 implies that for every
statistical measure that Data Canopy computes, it caches each of the resulting basic
aggregates over every 12 data values. This concept of chunk is essential to how Data
Canopy enables reuse — reducing repeated data access — between different queries during

exploratory statistical analysis.

As a result of chunking, queries of any data range larger than the chunk size can be
synthesized directly from basic aggregates. Even in cases when the query range does not
exactly align with the chunks, Data Canopy only needs to scan at most the two chunks
at the edges of the requested query range. In a similar fashion, queries having partial
range overlaps with previously computed chunks can also reuse basic aggregates. Map-
ping this concept to our running example, weekly and yearly variances in temperature
can be synthesized from daily aggregates. Also, a query that requests the mean tem-
perature over the last three weeks of a month, can reuse overlapping basic aggregates

corresponding to the first two weeks.

Overall. Data Canopy is able to reuse previously computed basic aggregates to synthe-
size a wide set of statistics. As a concrete example, by storing just two basic aggregates
of sum and sum of squares over five chunks in ten columns (a total of 100 values), Data
Canopy can reuse this information across queries that target 2° possible combinations
of chunks and request for up to four statistical measures — mean, variance, root mean

square, and standard deviation — over any of these ten columns.

4.3 DATA STRUCTURE

Data Canopy uses a set of segment trees to store basic aggregates. Segment trees support
efficient aggregate queries over a data range without the need to access individual data
items (Saxe and Bentley 1979; De Berg et al. 2000). This property is satisfied by storing,
at every parent node, an aggregate of its two children. Segment trees in Data Canopy
are implemented as binary trees. The Data Canopy catalog implemented as a hash table

stores pointers to all segment trees.

Segment trees are well-suited as a data structure for Data Canopy. This is because to

93

fi(m) column

v\@ range
X
f2(72) \@

Figure 4.2: Example of the Data Canopy Figure 4.3: Data Canopy decomposes
data structure with two segment trees Statistics into basic aggregates to enable
(ST) and a chunk size of three. various forms of reuse.

synthesize queries that request for statistics over a data range, Data Canopy only needs
aggregates over chunks that fall within that data range, and not their actual values.
Consider Query 1 in our running example. Data Canopy stores basic aggregates over 12
values (daily basic aggregates). A query that requests weekly standard deviation only
needs sum and sum of squares over 14 consecutive basic aggregates, and not their actual
values. This way, Data Canopy can synthesize statistics in time complexity which is

logarithmic in the number of chunks involved.

Data Structure Configuration. For every basic aggregate kept for every column,
Data Canopy maintains a separate segment tree. Every leaf of this segment tree stores
a basic aggregate value corresponding to a chunk. An example layout of the Data
Canopy data structure over a single column is shown in Figure 4.2. In this example,
Data Canopy holds two basic aggregates (sum and sum of squares), using two separate

segment trees, one for each basic aggregate.

By having a separate set of segment trees for every column, we ensure that the internal
nodes of each segment tree contain no surplus nodes (i.e., those that maintain aggre-
gates across columns or across statistical measures). As a result, the overall memory

requirement of Data Canopy as well as the size of the individual segment trees is mini-

o4

Given q, calculate the optimal

query depth
Term Description Té £
c Number of columns gﬁ
T Number of rows 3 i
h Number of chunks f 3
s Chunk size (bytes) 55
Vg Record size (bytes) ES i
Ust ST node size (bytes) [
Cache line size (bytes) =

Table 4.2: Data Canopy terms. Figure 4.4: For each query, Data Canopy

traverses the optimal depth d; of the seg-

ment trees.
Options Memory Query/Update
ST per Data Canopy 2:b-c-h—1 O(logb-c-h)
ST per column 2:b-c-h—c O(logb - h)
ST per statistic 2-b-c-h—s O(logec - h)
ST per column per statistic (Data Canopy) 2-b-c-h—b-c¢ O(logh)

Table 4.3: Memory, access, and update cost of different configurations of segment trees
(ST) storing b basic aggregates. The configuration used by Data Canopy (bottom) has
the lowest query cost and memory usage.

mized. Also, since range queries are localized to a single column or a set of columns (for
multivariate statistics) instead of the entire data set, we only have to search through
a subset of the total segment trees, instead of one big segment tree corresponding to
the entire data set. This arrangement still allows a data scientist or application to
request for individual statistics and combine them in ways that make sense according
to the domain and the data set. A comparison of the memory requirement and query
cost of various possible configurations of segment trees is provided in Table 4.3. The

configuration used in Data Canopy has the lowest query cost and memory usage.

Flexibility. The separation of segment trees allows for maximum flexibility in dynamic

and exploratory workloads. There is no need to construct or even allocate memory for

95

the entire Data Canopy in advance. Instead, Data Canopy can easily be extended, by

adding new segment trees, to cater for new columns or new basic aggregates.

Parallelism. The construction of Data Canopy can be aggressively parallelized as the
process of calculating basic aggregates and storing them is an embarrassingly parallel
one. To construct a univariate Data Canopy, the columns can be divided between the
number of available hardware threads. Similarly, when constructing a multivariate Data

Canopy, the segment trees for every column combination can be built independently.

4.4 OPERATION MODES

Depending on hardware properties, data size, and latency requirements, Data Canopy

can operate in one of three modes: offline, online, and speculative.

Offline. In the offline mode, Data Canopy is built in advance. This mode is useful
when users know the data and statistical measures of interest a priori and they can also
wait until Data Canopy is built before they pose their first query. The offline mode
builds the library of basic aggregates fully for a set of rows, columns, and statistical

measures specified by the user.

Online. In the online mode Data Canopy populates the library of basic aggregates
incrementally online during query processing. For every incoming query, Data Canopy
generates and caches the basic aggregates needed for this query if they do not already
exist in the library. As more queries are being processed, the library of basic aggregates
becomes more and more complete and can reduce data access costs for future queries

with higher probability.

The online mode can be combined with the offline mode. For example, a user may
generate any portion of the Data Canopy for any part of the data offline (or generate
as much as idle time allows) and then during query processing, Data Canopy operates

in online mode to fill in the rest of the missing pieces.

o6

StatMapper Find ST Result

g — | { ()} ﬁ F{I{rh}
L » E/‘fl(ﬂ}fk(ﬂc) i i Q
ine

s Recipe s mk— Q Offl

DC data structure

R R TS éd o

Cs |<L>| Ce les, ce], Ra
\ E e B / Speculate fOnline
Query R, R, Plan ‘
* Data ‘
Range Mapper BWER: WERoe
Mapping the range of a query to a set of chunks and the Based on the query and the policy, probing the DC
requested statistic to a set of basic aggregates. data structure and materializing missing chunks

Figure 4.5: The lifecycle of a statistical query in Data Canopy.

Speculative. In the speculative mode, Data Canopy takes full advantage of moving the
data through the memory hierarchy to generate more knowledge than what is strictly
needed for the active query. Every time it scans any part of the data set to answer a
query, it builds segment trees for all univariate statistics. We show that this imposes a
modest CPU and memory overhead for the current query, and Data Canopy potentially
avoids having to rescan the data for future queries for other statistics — trading a modest
CPU and memory overhead now for I/O benefits later on. For example, when Data
Canopy answers a mean query in speculative mode, it also builds a segment tree for
sum of squares so that it is possible to later efficiently synthesize the variance and

standard deviation.

4.5 (QUERY PROCESSING

We now explain how Data Canopy uses its library of basic aggregates to synthesize the

results of statistical queries. We use terms from Table 4.2.

Query. In Data Canopy, a query is defined by the set Q = {{C}, [Rs, R¢), S}, where
{C} is the set of columns targeted by the query; Ry and R, define the query range
i.e., the two positions on the column set C' on which a statistic is requested; and S is

the statistical measure to be computed. From our running example, Query 2 (mean

57

temperature for the third week) can be represented as Q; = {C4,[336,504), mean}.
Figure 4.5 depicts the steps taken to process a query. The first step is to convert the
query into a plan. To achieve this, the query range is mapped to a range of chunks, and

the statistical measure is mapped to a set of basic aggregates.

Mapping Query Range to Chunks. Data Canopy first maps the query range
[Rs, Re) to a set of chunks [cs, ce], such that the whole query range is covered. This
process is depicted on the left side of Figure 4.5, where the query range (shown in black
and grey) is mapped to the corresponding chunks. Given the mapping, we can now dis-
tinguish between two parts of the query range. The first part of the query range Rpc
(shown in grey) aligns perfectly with the boundaries of the existing chunks. In this case,
Data Canopy can fully use the basic aggregates of these chunks to synthesize the result.
The second part of the query range Ry (shown in black) at the two end-points of the
query range might or might not align with the existing chunks. Data Canopy has to
scan the two chunks at the end-points of the query range to compute basic aggregates
for R;. We call this part of the query range that always requires access to base data
the residual range. When Data Canopy operates in online mode, it may be that it has
to access more than two chunks so as to populate any missing chunks in any part of the

query range, not just at the end points.

Mapping Statistic to Basic Aggregates. The next step is to map the requested
statistical measure S to the corresponding set of basic aggregates { f(7)} and a function
F' to combine these basic aggregates. This is achieved by the StatMapper as shown in
Figure 4.5. For every statistical measure supported by Data Canopy, the StatMapper

stores a complete recipe to synthesize that statistic from basic aggregates.

The StatMapper is implemented as a hash table, where the keys are identifiers of sta-
tistical measures and each key corresponds to a recipe. The recipe is a data structure
that contains a list of basic aggregates {f({7})} required to synthesize the statistical
measure S as well as a pointer to a function that operates on and combines the basic
aggregates as defined by F. Overall, Data Canopy converts a query @ into a plan P,

making the following set of mappings:

o8

- R, ——
w 20
S
SAER! ‘ .
Q Synthesize from basic aggregates
2
(]
2
& 5 I Scan
0 Data
1K 10K 100K IM I0OM 100M

Number of rows (1)

Figure 4.6: As the number of rows in the
data set increases, a greater proportion of
the total queries is answered through basic
aggregates.

—_

=]

>

O

N

-

2}

o)

@]

Z

g 100M rows —A—

10M rows —&—

o 180 IMrows —7— |

so/28, 2s, 3s, d4s, 5s, 6s; s/

Chunk size (s)

Figure 4.7: Query cost, a convex function
of the chunk size, is minimized at the op-
timal chunk size s,. Here #=64B, b=5,
and k=2, s, = 220B.

{C}, [Rs, Re), S} — {{C}, [es, cel, Ra, {fF({T})}, F'}

Evaluating the Plan. The plan is passed on to the evaluation engine, where the
result is synthesized based on the current policy and state of Data Canopy (right side
of Figure 4.5).

If Data Canopy is operating in the offline mode, all basic aggregates have been pre-
computed and there is no need to touch the base data except to evaluate the residual
range Ry. In this mode no new basic aggregates are added as a result of query process-
ing. In the online and the speculative mode, some of the required basic aggregates (for
some chunks) might not be computed and stored already. In such cases, Data Canopy
accesses base data to evaluate basic aggregates on those chunks, and they are stored
in Data Canopy. Finally, when all basic aggregates required for the current query are

fetched and/or materialized, they are passed to function F' to generate the result.

4.5.1 ANALYZING QUERY COST

We formalize the cost of answering a query when both Data Canopy and data fit in

memory (we model the out-of-memory cost in §4.8). This cost is modeled in terms of

29

the amount of data accessed (cache lines).

We consider a query ¢ for a statistic S over a data range. The statistic S is defined
over k different columns, and it is composed of b total basic aggregates i.e., it accesses
b segment trees. For instance, in the case of a variance query, b = 2 (sum and sum of
squares) and k = 1 (univariate statistic), whereas for a correlation query b = 5 (sum and

sum of squares of both columns and sum of products) and k& = 2 (bivariate statistic).

Let Cgyy, be the cost of answering query ¢. This cost is divided in two parts: (1) probing
b segment trees, and (2) scanning the residual ranges of k columns. We denote these

costs as Cg and C). respectively. The total cost is:

Csyn = Cst + Cr

First, we model Cy. To answer a query ¢, Data Canopy traverses b segment trees. The
number of leaves in each segment tree is %, where r is the number of rows, vy is the
record size (in bytes), and s is the chunk size (in bytes). Moreover, the cost of probing
a segment tree with n leaves is at most 2logn cache line reads (Zheng et al.) (as a node

fits in a cache line). Hence, we can express Cy; as follows:

Cst =2-b-log, (T ‘Svd) (4.2)

We now model C,. A query on k columns has to scan at most 2k chunks i.e., at the
end points of the query range. The cost of scanning a chunk is i We get the following

formula for C,.:

2-k-s
Cr = 4.3
7 (4.3)
Using Equation 4.2 and 4.3, the total query cost becomes:
2-k-s Uy
Com= =3+ (2 b-logy) (4.4)

60

For simplicity of presentation, here we do not distinguish between the cost of a cache
miss (traversing the linked segment trees) and a cache hit (scanning a sequential residual
range). We study the effects of these hardware dependent parameters when we tune

and verify the chunk size in Section 4.10.7.

Synthesize or Scan. For queries with a small range, Data Canopy directly scans the
data if this results in a smaller query cost compared to traversing the segment trees and

synthesizing the answer. We describe below how this optimization decision is made.

The cost of scanning the full query range of size R, Cseqpn can be expressed as:

R-vy

o (4.5)

Cscan =
Now we calculate the boundary query range size Ry, where Cj.q, becomes equal to
Csyn- Below Rj, answering the query by scanning the complete query range is faster

than synthesizing it from basic aggregates. Using Equation 4.4 and 4.5, we get:

2-k-s 2 T Vg
Ry, = —#-b-1 4.6
b o +Ud i 0g2< 5) (4.6)

Data Canopy answers a query with range size R from basic aggregates when R > Ry,
otherwise it answers the query by scanning the full query range. Figure 4.6 shows how
Ry, (as a percentage of the number of rows r) decreases as r increases. This shows that
as the number of rows in the data set increases a greater proportion of total queries is

answered through basic aggregates. Here # = 64B, b =5, k = 2, and vg = 4B.

4.6 SELECTING THE CHUNK SIZE

We now explain how Data Canopy selects the chunk size to optimize query performance.

Optimal Chunk Size. The chunk size has opposite effects on the cost of scanning the
residual range C, and the cost of traversing segment trees Cy. Increasing the chunk

size, results in an increase of C, as the residual range increases. On the other hand,

61

increasing the chunk size decreases Cy; as the size of segment trees shrinks. As a result,
Csyn is a convex function of the chunk size and has a global minimum i.e., there is an
optimal chunk size s, that optimizes overall query performance. The convex behavior of
the query cost is shown in Figure 4.7 (# = 64B,b =5,k = 2). To obtain a closed-form

expression for the optimal chunk size s,, we differentiate Cs,, with respect to s:

b-#
k-In2

So = (4.7)
The optimal chunk size s, depends only on properties of the hardware (i.e., cache line
size) and the type of requested statistic (i.e., the ratio between the number of segment
trees and the columns that are scanned for the residual range). This is because the
optimal chunk size strikes a balance between the number of cache lines accessed when

scanning the base data (for the residual range) and when traversing the segment trees.

Optimal Chunk Size and R;. Observe from Equation 4.6 that s < Rp,Vr > s. In
other words, any chunk size (including the optimal chunk size s,) is always smaller than
the boundary range size R, below which a given query is answered by scanning the
range. A corollary of this observation is that independent of the workload the chunk
size should not be below s,. This is because Data Canopy will answer any query with
a smaller range size than s, by directly scanning the range instead of traversing the

segment trees (because this is faster i.e., it incurs fewer cache line reads).

Selecting the Chunk Size. By default, Data Canopy sets the chunk size spc to the
lowest value of the ratio %. This value is 1 (for b=k=1) and allows Data Canopy to store
just enough information (enough depth in the segment trees) to be optimal for queries
that access the least amount of segment trees (e.g., mean, max, min etc.). Hence, to

set the default chunk size, Data Canopy needs no prior knowledge of the workload.

Workload Adaptivity. To ensure optimal performance for queries with % > 1 (ie.,
those that access more than one segment trees), Data Canopy makes an adaptive deci-
sion and traverses shorter paths in the segment trees. This strategy is shown visually
in Figure 4.4. Given a query ¢, Data Canopy analytically computes the optimal chunk
size for this query s, using Equation 4.7. Then it calculates the optimal depth of the

62

segment tree for g:

Ty
d =10g2()
q Sq

Data Canopy goes only as deep as d; in the segment trees, and then scans the residual
range (now up to a size of 2 - k- s4). This strategy ensures that each query achieves

optimal performance by minimizing the data (cache lines) it has to read.

Overall, Data Canopy builds segment trees with a chunk size that guarantees optimality
for queries that need to access a single segment tree only (i.e., d;q,) and can afford to
do more cache misses going all the way to the leaves of the segment tree. For queries
that will access more segment trees, though, (and thus they will incur more cache
misses) Data Canopy adaptively gets out of the segment tree traversal sooner (i.e., at
d,) reverting on sequentially scanning more data chunks and thus achieving an optimal
balance tailored to each individual query. This optimization comes from the fact that
segment trees are binary trees and every node we read when traversing the tree leads to
a cache miss. As such there is a point when reading a cache line full of useful data (when
scanning data chunks) becomes better than traversing a binary tree. Other directions,
one may explore here, as alternatives to the optimization we propose, is the study of a
more cache conscious layout of the segment trees where every cache miss would bring a

cache line full of useful tree data.

4.7 MEMORY FOOTPRINT

Data Canopy’s memory requirement depends on: (i) the types of statistical measure it
maintains, (i) the chunk size, and (iii) the data size. For a given set of statistics S,
we define the Data Canopy footprint .% (S) as the number of segment trees per column
required to synthesize S on the entire data set. The size (in bytes) of a full segment tree
with the optimal chunk size s, and node size vg is given by vy - (2 - % —1). Hence,

the total size of a complete Data Canopy (in bytes) on ¢ columns is:

T - Vg

|IDC(S)|=c-vet-(2-

—1)-2(S) (4.8)

63

We define the Data Canopy footprint with respect to both a single statistic and a set
of statistics, as the number of basic aggregates per column required to synthesize all
instances of that statistic or set of statistics from Data Canopy. Below we elaborate

how it applies to univariate and bivariate statistics.

Univariate Statistics. The Data Canopy footprint of univariate statistics is inde-
pendent of the number of columns ¢. This is because to compute univariate statistics
on a column, we require no information from other columns. For example, the Data
Canopy footprint of mean is 1 because we need to keep only the sum for every column
to synthesize the mean. Similarly the Data Canopy footprint of variance and standard

deviation is 2.

Bivariate Statistics. The Data Canopy footprint of bivariate statistics depends on the
number of columns ¢ as they require information from pairs of columns. For example, to
synthesize all pairwise correlations, we need sums and sums of squares of all ¢ columns

as well as C'(CQ_I) sums of pairwise products i.e., a total of %6_1)

basic aggregates are

stored for every column.

Set of Statistics. The Data Canopy footprint is similarly defined for a set of statistics.
For example, the Data Canopy footprint of mean and variance is 2 whereas the Canopy

footprint of standard deviation, mean, and correlation is %

Using terms from Table 4.2, we define the size of Data Canopy storing a set of statistics

S as follows:
IDO(S)| = c-(2-h—1)- F(S) - vy

Composabilty. Here we define the concept of composability, which can be used to char-
acterize the reusability of the basic aggregates cached by Data Canopy. Composability
is the extent to which basic aggregates are shared by the set of statistics S supported by
Data Canopy. Formally, it is the ratio between the number of basic aggregates shared

by all members of S and the total number of basic aggregates required to synthesize S.

64

Let %(S) be the set of basic aggregates required to synthesize a statistic S, then the
composability of S, given by €(S) is:

N ()

& = Lh=1 “7\M/
) U= (35

For instance, the composability of S = {mean, variance, standard deviation} is one-half.
% (S) is zero when none of the statistics share any of the basic aggregates. On the other
hand, € (S) is one when the same set of basic aggregates can be used to compute every
member of S. A highly composable set of statistics will result in better reusability and

lower memory requirement.

4.8 QOUT-OF-MEMORY PROCESSING

Now we introduce a three-phase eviction policy that maintains good performance guar-
antees as the data size and the size of Data Canopy exceeds main memory capacity. The
high level idea is that Data Canopy maintains a cache of data pages, which are evicted
when there is memory pressure and reloaded if needed. Similarly, parts of Data Canopy
are also evicted and reloaded if needed. This policy captures both the case when data

does not fit in memory and the case when Data Canopy does not fit in memory.

Phase 1. During the first phase, as main memory runs out, Data Canopy shrinks
horizontally by removing one layer of leaf nodes from every segment tree in a round-
robin fashion. This is equivalent to doubling the chunk size. Both data and Data
Canopy still fit in main memory, and so the system maintains good performance (i.e.,
query processing is in the order of hundreds of microseconds). If there is more memory
pressure and the chunk size exceeds the size of a page (4KB to 64KB), Data Canopy

stops shrinking and moves on to Phase 2.

Phase 2. During Phase 2, Data Canopy maintains data pages in memory only as a
cache of frequently accessed data. It evicts data pages from main memory using an
LRU policy. Query cost remains low since each query has to touch at most 2k pages

to scan the residual range, where k is the number of columns referenced by a query.

65

The original segment tree is The right sub-tree is
completely reused as the left materialized incrementally as
sub-tree. needed by incoming queries.

The segment tree
doubles in row capacity

Column Existing rows

Figure 4.8: Data Canopy adaptively handles new data (rows).

For example, a correlation query needs to access at most two columns and thus touches
at most four pages, which takes approximately 40 ms on modern disks. Moreover, for

frequently accessed chunks, the cache prevents a query from going to disk.

Phase 3. In the extreme case, when none of the data can fit in memory, we reach the
scenario, where parts of Data Canopy also need to be evicted. In this case, Data Canopy
evicts whole segment trees using an LRU policy. These segment trees are spilled to disk
and reloaded if needed. To make it easy when reloading segment trees from disk that
may refer to potentially dirty chunks (updated), we keep an in-memory bit vector for
each segment tree, which marks dirty chunks (1 bit per chunk). If memory pressure

continues, bit vectors are also dropped along with the on-disk segment trees.

Offline Mode and Memory Pressure. When Data Canopy is set to offline mode
it is given a set of data (row and columns) and a set of statistics to be precomputed.
Data Canopy first computes the overall memory footprint that the resulting structure
will have and if it exceeds available memory, Data Canopy has to operate immediately
in Phase 3. Before doing so, Data Canopy first gives the user a warning and option if
they want to reduce the amount of data or statistics to be included so that it fits in the

memory budget. Otherwise, Data Canopy proceeds in Phase 3.

66

4.9 HANDLING UPDATES

We now discuss how Data Canopy handles insertions, updates, and deletes. Data

Canopy handles updates incrementally to avoid overheads during online exploration.

Inserting Rows. When new rows are inserted and the new total number of rows
exceeds the existing capacity of Data Canopy, then Data Canopy needs to expand.
It does so by doubling the capacity of its segment trees without doubling the size
immediately. This means that a root is added in each segment tree with the previous
root as a left child and a new empty right child (and subtree). This results in effectively
no immediate memory overhead. Data Canopy then populates the new right sub-tree

adaptively only when and if the new rows are queried (Figure 4.8).

Inserting Columns. When a new columns is added, Data Canopy needs to simply
add this column in its catalog. Given that columns are treated independently there
is no further complexity resulting from the addition of a new column. As data in the
new column is queried, Data Canopy allocates segment trees for this column and then

populates them incrementally.

Updating Rows. When a record z at row r of column c is updated, Data Canopy
first retrieves the old value x4 of x and uses it along with the new value ¢, of T to
update all segment trees that involve column c. For each segment tree, Data Canopy
looks up the basic aggregate y,q for the chunk where row r resides, and it updates it

as follows': Ynew = Yora — 7(Tota) + T(Tnew)-

rvg

Assuming a univariate segment trees on column c, the cost of updating them is a-logy ¢

(where log, =52 is the depth of the segment trees). Moreover, assuming b bivariate
segment trees on column c, the cost of updating them is b - logy =3¢ 4 b. The additive b

term derives from the fact we need to fetch one value from another column per segment

More generally, we update y using the aggregation function F' and its inverse F~! as follows:
Ynew = f (f71 (T(%o1d)s Yola) ,T(chw)).

67

tree to adjust the sum of products. The overall update cost Cypgate is:

T Vg
S

Cupdate =2 (a + b) ' 10g2 +b (49)

Deleting Rows. Data Canopy deletes rows in-place using a standard technique for
fixed-size slotted pages, where the granularity of a page is the chunk. Each chunk has
a counter that keeps track of the number of valid rows in a chunk, and the valid rows
are placed first in the chunk. When a row is deleted, we replace each deleted value z,q

with the last valid value in the chunk, and we decrement the counter.

To update the segment trees, we probe all of them for the basic aggregate for the chunk
of the deleted row and update it as follows?: Ynew = Yoid — T(Zo1q). In addition, we
maintain one invalidity segment tree per table that keeps track of the number of invalid
entries per chunk for subsequent statistical queries, as we can no longer assume that each

chunk is full. The cost model is the same as for updates with one more additive term

Vg
s

of 2 -logy =52 for updating the invalidity segment tree: Cyciete = Cupdate + 2 - 10gy

4.10 EXPERIMENTAL ANALYSIS

We now demonstrate that Data Canopy accelerates statistical analysis and machine

learning algorithms.

Experimental Setup. All experiments are conducted on a server with an Intel Xeon
CPU E7-4820 processor, running at 2 GHz with 16 MB L3 cache and 1 TB of main
memory. This server machine runs Debian “Jessie” with kernel 3.16.7 and is configured
with a hard disk of 300GB operating at 15KRPM. We implemented Data Canopy from
scratch in C++4 compiled with gce version 4.9.2 at optimization level 3. The current
prototype supports three univariate statistics: mean, variance, and standard deviation;

and two bivariate statistics: correlation and covariance.

We compare the performance of Data Canopy with two widely used statistical packages:
NumPy (num 2013) in Python and Modeltools (Foundation 2016) in R. Also, we show

2More generally, we apply: Ynew = f 1 (T(To1d)s Yold)-

68

Workload | Column Dist. | Range Size Repetition
U Uniform Unif(5,10) % | low

Z Zipfian Unif(5,10) % | moderate
Us Uniform Zoom-in high

A Zipfian Zoom-in very high

Table 4.4: Evaluation workloads.

how Data Canopy compares to MonetDB (Boncz et al. 1999). In addition to these
systems, we compare Data Canopy against our own statistical system StatSys. StatSys
shares the code base with Data Canopy, but it has none of the design concepts that
allow Data Canopy to synthesize statistics from basic aggregates; instead, it needs to

fully compute each query from scratch.

Benchmark. There are no standard benchmarks for exploratory statistical analysis. To
test Data Canopy we develop a benchmark that captures a wide range of core scenarios

and stress tests Data Canopy’s capability to reuse data access and computation.

We generate exploratory statistical analysis pipelines as sequenc- es of queries. Each
query requests to compute a statistical measure on a range over a data column (or a
set of data columns for multivariate statistics). The benchmark consists of four distinct
workloads generated by varying two parameters: the probability with which queries
are distributed over columns and the distribution of query range sizes. These work-
loads are summarized in Table 4.4. We investigate two different distributions of queries
over columns: column-uniform (U and U;) and column-zipfian (Z and Z;). In the
column-uniform workloads, queries are equally divided between all columns. In the
column-zipfian workloads, queries are divided over columns conforming to the zipfian
distribution (s=1) i.e., the column with the highest number of queries has twice as much

queries in the workload as compared to the column with the second highest.

Similarly, we investigate two different distributions for the query range sizes. In the
range-uniform workloads (U, Z), the range sizes are uniformly distributed between 5
and 10 % of the total column size. The range-zoom-in workloads (U, Z) emulate a
case where data scientists progressively zoom into the data set increasing the resolution
at which statistics are computed. In this case, the range size follows a sequence, where

the first query is over an entire range. All subsequent pairs of queries divide the range

69

NumPy (Python) —— Modeltools (R) —=—

MonteDB —v— Data Canopy —a—

z 10° 10*
g10° N WWWNW 102
= WMM’W o’
j=%

21 107

0 400 800 1200 1600 2000 0

(a) Workload U (b) Workload Z

400 800 1200 1600 2000

0 400 800 1200 1600 2000 0
(c) Workload U,

400 800 1200 1600 2000
(d) Workload Z,,

Query sequence

Figure 4.9: Data Canopy, in online mode, out performs state-of-the-art systems across
a variety of workloads for exploratory statistical analysis by being able to incrementally
improve its performance and minimize data access.

2 1000
b U xXx1
g 100 Zr— |
5 U, =59
= 10 Z, 0/ |
Q
]
s 1]
ol
£ 0.l

Statsys Online DC Offline DC

Scenarios

Figure 4.10: Online and offline Data

Canopy result in one and two orders of
magnitude improvement respectively.

5
10
- 104 Statsys XXX Online 1 Offline B3
- L]
QE> 10°
£ 10% ¢
2 10}
E 100t
R
& 107 |
1072
Simple Linear ~ Bayesian Collaborative
Regression Classification Filtering
Algorithm
Figure 4.11: Data Canopy accelerates

core machine learning classification and
filtering algorithms.

of previous queries into two equal parts, then compute statistics on both. Then we

randomly pick one of these parts to continue doing the same. For example, zoom-in
over a range of size 100 can be the sequence: {[0,100), [0, 50),[50,100), [50,75), ... }.

These workloads allow us to test Data Canopy with different kinds of repetition. They

map to patterns followed by data scientists during data exploration: The initial phase of

exploratory analysis, often classified as the foraging phase (Battle et al. 2016; Pirolli and

Card 2005), exhibits patterns similar to column-uniform workloads. This is when data

scientists compute statistics uniformly over multiple columns. Over time, the analysis

focuses on a smaller set of columns (column-zipfian workloads), and requests for more

detailed information (range-zoom-in workloads) (Battle et al. 2016).

70

4.10.1 REUSE IN EXPLORATORY STATISTICAL ANALYSIS

In our first experiment we compare Data Canopy against state-of-the-art systems and we
demonstrate its ability to reuse data access and computation. We set-up this experiment
as follows: The data set contains 40 million rows and 100 columns. Each column is
populated with double values randomly distributed in [-10°,10%). The total data size
is 32GB. Data Canopy is automatically configured with the optimal in-memory chunk
size. For our experimental system, this results in a chunk size of 256 bytes or 32 data
values (in Section 4.10.7 we verify the chunk selection model). Data Canopy operates
in the online mode, which provides an apples-to-apples comparison across all systems

as it assumes no preprocessing steps.

Figure 4.9 shows the results for all four workloads. Each one of the four graphs in
Figure 4.9 corresponds to one of the workloads in Table 4. Each graph depicts the
evolution of the query performance (response time on the y-axis) as the query workload
evolves, i.e., as we run more exploratory queries (z-axis). In total we run 2000 queries
for each workload. Each graph shows the performance of NumPy, R, MonetDB, and
Data Canopy.

The main observation across all graphs in Figure 4.9 is that while all state-of-the-
art systems maintain a relatively constant behavior across all workloads, Data Canopy
improves as it processes more queries. The y-axis is logarithmic and depicts the response
time per query. For example in Figure 4.9(a) after just a hundred completely uniform
queries, the average response time of Data Canopy is 1.9x lower than NumPy and 11.4x
lower than MonetDB. After 2000 queries, the performance improvement per query goes
up to 6.7x and 34.5x respectively. Thus, in most cases Data Canopy results in an
overall benefit (during an exploration path, i.e., over a sequence of queries) of multiple

orders of magnitude. The longer the exploration path the bigger the benefit.

In addition, Data Canopy is faster than all other systems even for the very first query
across all workloads in Figure 4.9. This is because contrary to NumPy and R, Data
Canopy is a tailored C++ implementation for statistics. MonetDB is a performant

analytical system but it is not tailored for statistics.

71

Similar observations hold for Figures 4.9(c) and 4.9(d) where the workloads exhibit
zoom-in patterns. In these workloads, the range size decreases by half after the first
500 queries. Then, it decreases by half every 1000 queries. This constant decrease in
range sizes is reflected in the response times of all systems. In other words, all systems
can improve nearly linearly to the size of the range on which statistics are computed.
This is because they simply do computations on fewer data items. On the other hand,
Data Canopy improves drastically by being able to reuse previous data accesses and
computations. For all queries after the first 500 queries, the average response time
goes down to sub-milliseconds. Even during the first 500 queries, there is a continuous
sharp improvement in Data Canopy’s response time. In both workloads, Data Canopy
is completely built at the end of the first 500 queries, and all future queries are directly
synthesized from the basic aggregates within Data Canopy.

For all systems and for all these experiments we make sure that all data is hot in memory
before we query it. This is the least favorable scenario for Data Canopy as its goal is

to reduce data access costs.

Data Canopy Scenarios. Next we evaluate the offline and online modes of Data
Canopy. In addition, we compare against StatSys, which effectively uses the Data

Canopy code to compute statistics but does not cache and reuse basic aggregates.

The set-up of this experiment is exactly the same as before. The results are shown in
Figure 4.10. This time we report the cumulative response time to run all queries. For
all workloads Data Canopy results in significant benefits over the no reuse approach of
StatSys (up to one order of magnitude i.e., 4.7x to 15.8x). If we can allow to precompute
the library of basic aggregates up front this brings yet another benefit of two orders of
magnitude (194x to 470.8x). In this scenario all queries are directly synthesized from
Data Canopy (each query may at most scan two chunks at the boundaries of its range).
Overall, the improvement is bigger for range-zoom-in workloads (U and Z,). This is
because for these workloads the first query on every column results in a complete scan,
due to which basic aggregates required for future queries on that column are already
computed. Overall, Data Canopy is effective in both online and offline mode bringing

drastic improvements in response time.

72

4.10.2 ACCELERATING MACHINE LEARNING

We now show how Data Canopy accelerates core machine learning classification and
filtering algorithms. Specifically we study linear regression, bayesian classification, and
collaborative filtering (Bishop 2006). All three algorithm can utilize statistics (basic
aggregates) cached in Data Canopy as primitives. The set-up is the same as in previous
experiments (40 million rows and 100 columns) and we run each of the algorithms on
the entire data set as follows: (i) Simple linear regression is ran on all pairs of columns,
(ii) A gaussian naive bayes classifier is trained on the entire data set. In this case, the
rows in the data set are divided between 40 different classes (one million samples per
class), (iii) Collaborative filtering (using correlation as the similarity measure) is ran on

the entire data set.

Figure 4.11 shows the performance of these three machine learning algorithms with
Statsys (brute force), online, and offline Data Canopy. We observe that online Data
Canopy (no preprocessing step) results in up to 8x improvement. This is because
running these algorithms results in repetitive calculation of statistics. Furthermore, if
there is enough idle time to build Data Canopy offline, we observe up to six orders of
magnitude improvement in running time for simple linear regression and collaborative
filtering and three orders of magnitude improvement for bayesian classification. The
lower improvement for bayesian classification is due to the fact that we have to compute
statistics for every class in the data set (i.e., 40 times more queries and each query

results in scan of up to two chunks per column at the end-points of the query range).

4.10.3 SCALABILITY

Here we show that Data Canopy scales with the data size (number of columns and

rows), hardware contexts, and queries.

Scaling with Number of Rows. First, we show how Data Canopy scales when we
increase the number of rows in the data set. The set-up is the same as in previous

experiments. This time we vary the rows from 100 million to one billion.

Figure 4.12 reports the results. It depicts the cumulative time to run all four workloads.

73

2

= 409 U g Z U, B Z, |

£ 1024 |

g 256 ¢

g g3

5 64 K

g 5

= 16 + K

5 K
KX

= 4t K

g &

= 1 <

100M 250M 500M 1B

Number of rows

Figure 4.12: Data Canopy scales almost
linearly with the number of rows in the
data set for all workloads.

512

256 - 1

128 |
64 §§§
1 2 4 8

Number of cores

Construction time (s)

Figure 4.14: The construction of Data
Canopy scales linearly with the cores.

(@)}
i

~~
2
z
s 3| U =2 g
E YA — K
5 K
= 16 U, s 3
S [
£ glZ == K
= 5o
3 K
5 40 K
£
5
= 2 &
< 0%
g K
S Eﬂ&ﬂ LT i
=~

100 200 400 800 1600 3200

Number of columns

Figure 4.13: Data Canopy scales with the
number of columns resulting in sub-linear
increase in query execution time.

U—V—Z%

Average response time (ms)
[\S]

4x10° 6x10° 8x10° 1x10°

Query sequence

0 2x10°

Figure 4.15: As we increase the number
of queries, the query response time con-
tinuously goes down (up to 190x).

As we increase the number of rows from 100 million to 250 million, the total execution

time increases by 2.51x (average across all workloads) i.e., an approximately linear

increase in execution time. As we double the number of rows beyond 250 million, the

trend diverges slightly from a linear trend. The increase in cumulative response time

as we increase the number of rows from 250 million to 500 million and from 500M to 1

billion is 2.26x and 2.3x respectively. This super-linear increase in cumulative response

time is due to the fact that with more rows, the size of the query range (unif(5,10)% of r)

increases. This results in more chunks being added to the Data Canopy data structure,

for every query that is executed. The overhead of adding these chunks results in this

super-linear increase in the overall response time.

74

Scaling with Number of Columns. Now, we show how Data Canopy scales as we
vary the number of columns from 100 to 3200. In this experiment, the number of rows

is fixed to one million.

Figure 4.13 reports the cumulative time to run all four workloads. As we double the
number of columns, we see an average increase of 1.68x and 1.22x in the total execution
time for the uniform (U and U,) and zipfian (Z and Z,) workloads respectively. In
all cases the execution time increases in a sub-linear fashion. For uniform workloads
there is a higher increase in the total execution time because they target all columns
equally and it takes longer to populate the library of basic aggregates. For the zipfian
workloads, since the columns are targeted following a zipfian distribution, increasing the
number of columns does not substantially affect the overall execution time — columns
that are frequently accessed will have their corresponding library of basic aggregates

completely materialized.

Overall, Data Canopy scales in a robust way, being able to absorb the increased amount

of rows and columns.

Scaling with HW contexts. We first show the construction of Data Canopy scales as
we increase the number of cores. We construct a complete Data Canopy (on 40 million
rows and 100 columns) as we increase the amount of cores. Figure 4.14 shows that the
construction time of Data Canopy goes down linearly with the number of cores. This

is because the basic aggregates can be computed and cached completely in parallel.

Scaling with the Number of Queries. We now show how Data Canopy scales when
we increase the number of queries. We keep the same overall setting as before. We
report scaling results only for the range-uniform workloads (U and Z). This is because
for the range-zoom-in workloads (Ut and Z4), Data Canopy is completely built after
the first 500 queries. Thus, all future queries are synthesized directly from Data Canopy
(with minor data accesses to compute residual ranges), and the average response time

remains constant thereafter.

Figure 4.15 shows the results. To make it easier to interpret, we report the average
response time for every sequence of 50K queries. The more queries are processed, the

more Data Canopy improves. For example, the last query takes up to 190.9x less time

75

Base data in memory (%)

E - 100 100 100 75 50 25
2 2 2500 : :
-8 QE) DC EZXX] PhaseZ
E = 2000 ¢ StatSys
g § 1500 | orase 1
172) = ase
= 3 1000 +
o 2
z S 500 |
z ‘ ‘ ‘ ‘ ‘ g 0

0 20x10° 40x10* 60x10* 80x10* 10x10° F 24

Query sequence Number of rows (M)

Figure 4.16: Data Canopy gracefully han- Figure 4.17: In memory-constrained set-
dles memory pressure, keeping query pro- tings, Data Canopy provides 4x perfor-
cessing time within an interactive range. mance improvement over Statsys.

to compute than the first one. Toward the second half of the query sequence, the pace
of improvement decreases as more queries can be synthesized directly from the library
of basic aggregates without accessing the base data. The initial improvement in average
response time is higher for workload Z as compared to workload U because queries
exhibit more locality in the first one; once the library of basic aggregates is constructed,
though, performance is nearly the same for both workloads as all queries are resolved

directly from this library with only minor access to base data (for residual chunks).

4.10.4 HANDLING MEMORY PRESSURE

We now demonstrate that Data Canopy gracefully handles memory pressure resulting
from: (i) processing queries (that increases the size of materialized basic aggregates)

and (ii) increasing the size of base data.

Memory Pressure From Processing Queries. For this experiment we allow a
memory budget of 8GB. The size of the data is set to 7.2 GB (90 columns, 10 million
rows, 8 bytes record size). This means that initially the entire data set fits in main
memory. Data Canopy operates in online mode which means that initially it has zero
memory footprint and it grows as more queries arrive. We run a sequence of queries
from the U workload. This implies that Data Canopy incrementally materializes new

segment trees, increasing memory pressure.

76

Figure 4.16 shows how the average response time of Data Canopy evolves as memory
pressure increases. The dotted line depicts the point beyond which Data Canopy oper-
ates in Phase 2 of the out-of-memory policy i.e., some data is now accessed from disk.
We observe that as Data Canopy enters Phase 2, there is an initial increase in query
response time. This is because Data Canopy is still being built, and every query may
result in a scan of data on disk. However, as the query sequence evolves and Data
Canopy materializes further, the query response time decreases. Now, Data Canopy

scans at most two chunks per query.

Memory Pressure From Increased Data Size. Now we analyze the scenario, where
the memory pressure is due to an increase in the size of base data. Specifically, we show
how Data Canopy compares with Statsys (our baseline system that shares the codebase
with Data Canopy but always compute statistics from data instead of basic aggregates).
We set up an experiment with 8GB of main memory and Data Canopy operates in the
online mode. The number of columns is fixed to 100 and we vary the number of rows
to test the performance of Data Canopy across different stages of Phase 1 and 2 of

out-of-memory policy.

Figure 4.17 shows the total execution time of 10K queries from the U workload under
different memory pressures. In Phase 1, Data Canopy remains consistently 4x faster
than Statsys. As the memory pressure builds up and Data Canopy transition to Phase
2, it continues to give a performance improvement of 4x even when only 50 percent of
the data fits in memory. Under extreme memory pressure (only 25 percent of the data

fits in memory) Data Canopy still results in 2x performance improvement.

4.10.5 MEMORY FOOTPRINT AND FEASIBILITY

We discuss the memory footprint of Data Canopy in two scenarios: (1) when it is built
with the optimal in-memory chunk size (256 bytes for our experimentation system) and
(2) when, under memory pressure, it operates in Phase 2 of the out-of-memory policy
(the chunk size grows to 64KB). These two scenarios correspond to the maximum and
the minimum memory footprint of Data Canopy respectively. The experiment is on

100 columns and 40 million rows. Each node in Data Canopy is 8B. The analysis is

7

100 — ., 108
§=S, ! Univariate DC XXX 2 ™
) ! Bivariate DC 1 | £ rows
@ 10 + l 1 210
- 2
.5 = 10M rows
5 I ! 5 .06
%‘ i g 10
| s= k)
< 0.1} ! $=64KB 1 2 100M rows
z ! g 10°]
=) i o
g 001: ! 3 g L 1T rows
= ! T = = S = R = = E— = S— S——
0.001 1 1 100 200 300 400 500 600 700 800 900 1000

Max U workload Max U workload Number of columns

Figure 4.18: Under memory pressure, Figure 4.19: Data Canopy can support
Data Canopy can vary its chunk size be- tens of thousands of bivariate statistics.
tween the memory-optimized and disk-

optimized size.

conducted with the U workload. In this experiment, Data Canopy operates in the online

mode, i.e., Data Canopy is built as queries are executed.

Figure 4.18 shows both the maximum memory footprint of Data Canopy in each scenario
and the memory footprint after executing 2000 queries. We report the memory footprint
of both univariate and bivariate statistics. In the case of univariate statistics, the
maximum memory footprint is 1GB, and under memory pressure, it can incrementally
shrink down to just 10MB. The maximum memory footprint of bivariate statistics is
32GB and, in a similar fashion, can shrink down to just 490MB. More generally, Data
Canopy is able to vary its overall size (by changing its chunk size) to fit within the
available main memory. Overall, the usage of the U workload remains less than one-

third of the maximum size.

Next, we show that under memory pressure Data Canopy can still efficiently support
tens of thousands of bivariate statistics over a wide range of data sizes. In this analysis,
the main memory budget is set to 16GB, and Data Canopy operates in Phase 2 of the
out-of-memory policy. The chunk size is equal to a page size (64KB). All univariate
segment trees are in memory. Figure 4.19 shows the number of bivariate segment trees
that Data Canopy supports in the remaining amount of main memory across a wide
range of data sizes. Each of the segment trees can be used to answer a bivariate statistic

over any range of a pair of columns.

78

—
70 - Insert =« Query XXX]
@ 60 L Reconstruct - ---- g 20 L % Update mmmm |
£ 9%,
g 50+ = :::::1 vse9,
.5 s 15t KX KX
= S K KRR
g 407 = K 1
2 + 3 4 R
2 301 2 3 10! toSeS I oo% Il =z
2 P 2 RRX 1R KX
a v % R IXK] RXA
2 20 ¢ v o R IXK] KRXA
3 n - 50 YRR 15 |
& 0 =] [S%o I o % I %%
oh -k g 5 B B
‘ 0%
0 o] W E 0 RRAYIRK] RXA [
0 1x10° 2x10% 3x10 4x10® 5x10° 6x10° 7x10° 8x10° o 1 2 5 25 50 75 100
Query sequence Point updates (%)

Figure 4.20: Data Canopy gracefully han- Figure 4.21: Updates in Data Canopy re-
dles new data. sult in negligible overhead.

We observe that even for large data sets (1T rows and 1000 columns, data size to
memory ratio of 1:250), Data Canopy can still efficiently support up to 10000 bivariate

statistics, in addition to all univariate statistics.

4.10.6 INSERTIONS AND UPDATES

Now we show that Data Canopy seamlessly handles insertions of new data as well as

updates to existing data.

Insertions. First, we show that Data Canopy efficiently handles insertions of new rows
and new columns. We compare how Data Canopy incrementally handles updates to a
strategy, where Data Canopy is built anew every time new data is added. We call this
the reconstruct strategy. In this experiment, Data Canopy starts off with 25 columns
and 100 million rows and operates in the online mode. New data is added in three
phases: (1) the number of rows are doubled, (2) the number of columns are doubled,
and (3) both the number of rows and columns are doubled. There is an interval of 2000
queries between each of the phases. At any point in time, we run the U workload that
targets all data that is in the system. We report the response time as the sequence of
queries passes through the three phases in Figure 4.20. We observe that as new data
is added, there is an initial increase in response time that converges to the optimal for
both strategies. The incremental strategy employed by Data Canopy results in lower

initial overhead as well as converges faster to stable performance as compared to the

79

256 |

= IM ——100M -
g 128 10M ----- 1B

S 64

=

£ 326

=

3 16 i

2 sl

<

S 4

16 64 256 1024 4096 16384 65536
Chunk size (bytes)

Figure 4.22: Data Canopy’s query performance is a convex function of its chunk size.

reconstruct strategy. This is because in the incremental strategy, both the insertion of
new rows and new columns is handled in a lightweight manner (merely adding metadata
to the catalog) and basic aggregates are materialized only when and if queries target
the new data. In addition to this, the existing library of basic aggregates is completely
reused, whereas with the reconstruct strategy, the library is built from scratch after

every insertion phase.

Updates. Next, we show that response time is minimally impacted in the presence
of updates to existing data. We show this for a varying percentage of updates in the
workload. We set up an experiment with 100 columns and 100 million rows. We run
2000 queries from the U workload with varying percent of point updates in the workload.
Figure 4.21 shows the total execution time as we increase the proportion (percentage)
of point updates in the workload. As we increase the proportion of point updates in
the workload, the number of read queries decreases resulting in an overall decrease
in execution time. Throughout this time, the overhead introduced by point updates
remains low. In low updates scenarios (1 to 5 percent point updates) the overhead
is less than 1 percent. For extremely high update scenarios (25 to 75 percent point

updates), the average update overhead remains below 10 percent of execution time.

4.10.7 MODEL VERIFICATION

We now verify the query cost model that we developed in Section 4.6. Similar to the

analysis in Figure 4.7, we vary the chunk size for various number of rows and observe

80

how this affects performance. The results are shown in Figure 4.22. We report the total

execution time of 10K queries from the U workload on 100 columns.

There are two observations. First, the experimental results verify the behavior we
see from the model in Figure 4.7. That is, there is a convex shape and for all data
sizes there is a common chunk size area where we get the optimal overall performance.
Second, this area is actually quite large (the z-axis is logarithmic) and so picking any
chunk size that is close enough to the center of this area gives optimal behavior. A
positive side-effect of this is that we do not have to make our query cost model any
more complex, i.e., by adding separate weights for when a cache access is a miss or a hit
to capture the different latencies (traversing a segment tree will typically cause cache
misses while scanning chunks at the end-points of the query range (residual range) will
typically cause a cache miss followed by more than one cache hits). Capturing simply
the number of accessed cache lines allows us to get an estimate close enough in the
optimal range, i.e., our analysis (as shown in Figure 4.7) estimates the optimal chunk
size to be 220 bytes while Figure 4.22 shows that indeed 220 bytes is within the optimal
range. An important side-effect of taking advantage of this behavior is that we do not
need a training process for different machines (e.g., to figure out the cost of different
accesses) - all we need is the cache line size. To fully optimize performance we pick a
chunk size that is a multiple of the cache line. That is, the model gives us an optimal
chunk size of 220 bytes, which we translate to a default chunk size of 256 bytes (4 times

64 which is the cache line size).

81

Deep Collider: Enabling Better Neural Network
Design

We now present Deep Collider in detail. Deep Collider enables better deep learning
model design by demystifying the relationship between a neural network model and
various metrics of interest. The fundamental question we address with Deep Collider
is given a number of parameters, what deep learning model to use. Deep Collider
answers this question holistically, considering not only metrics related to the quality of
the model (such as accuracy) but also those that have to do with the cost of training
and deploying such models. Deep Collider targets a part of the deep learning model
design space that is not very well understood: How to decide between single network
models and ensembles of models under a parameter budget. Deep Collider establishes
that deep neural networks’ ensembles are more useful than single models for a more
comprehensive range of use cases than previously understood. It also provides various
ensemble design guidelines to optimize for both the quality and the cost of ensembles.
This chapter describes the Deep Collider framework, the design space it analyzes, and

the various design guidelines it uncovers.

82

Param.: |S| | Depth: d | Width: w Param.: |S| | Depth: d | Width: w’ 1 Param.: |S| | Depth: d’ | Width: w
e I,) ?Rt,h,,,,,,,,,,,,,l ELi | | | | | i 1 ’l’E’l"”"l’} rllj;’z"""’l’} ’l’];;""’l’}
< |l | | | i e ‘ 1 ‘
=ik : P ‘ ‘
§ H] [] [] E2 _l,,”,,,,,l,,l 777777777 |”|7 77777777 L ! [] | [| ! [|
}l] [] [] ! —_— [i i [[i
1 BI_JC_JC 1) = L
(a) Single network (b) Depth-equivalent ensemble (deq) (c) Width-equivalent ensemble (weq)

Figure 5.1: We explore a design space consisting of three design classes: (a) Single con-
volutional network models, (b) Depth-equivalent ensembles, and (c) Width-equivalent
ensembles. The two ensemble design classes are created by distributing either the width
factor or the depth corresponding to the single network amongst the ensemble networks
while keeping the other factor fixed.

5.1 FRAMEWORK: DESIGN SPACE

The design space we explore consists of single convolutional neural network models
and two classes of architecturally-homogenous ensembles. These ensemble classes help
isolate the effect of the two design knobs — depth and width — on the quality and cost of
an ensemble design. We first describe how we ensure a robust comparison of alternative

model designs and then explain the degrees of freedom we explore.

Establishing Grounds for Fair Ranking. A key element of our framework is that the
possible model designs are compared to each other only under equivalent resources. We
ensure this by only comparing designs that have the same number of parameters. This
comparison allows us to separate the quality of a design from the amount of resources
given to it. Another way to think about this is that given a parameter budget, we
can investigate how the three design classes rank for all relevant metrics (training and

inference time, accuracy, and memory usage).

We fix the number of parameters because of its two distinctive properties over other met-
rics (that we could have fixed), such as training time, inference time, or accuracy: First,
the number of parameters of a network is directly proportional to all other resource-
related metrics. Second, the number of parameters is independent of the hardware or

the software platform used and can be computed exactly from a network specification.

83

The Single Network Versus Ensemble Design Space. Our design space consid-
ers a convolutional neural network architecture S(*@ from a class of neural network
architectures C. S has width factor w, depth d, and number of parameters |S].
Similarly an ensemble is described as E = {FE; ... E;}. Ensembles are architecturally-
homogenous i.e., all ensemble networks Fj ... E} have the same architecture and each
network has | E|/k parameters. When we compare a single network S(*4) from C with
an ensemble E we ensure that Ey ... E, € C and |Eq| + ...+ |Ex| = |5|.

The reason why we restrict the design space to homogenous ensembles is to reduce the
otherwise intractably large space! of all possible ensembles given a single network to a
size that we can feasibly and thoroughly experiment with and reason about. Further-
more, many neural network ensembles introduced in research and used in practice are
similarly homogenous, for instance, SnapShot Ensembles and Fast Geometric Ensem-
bles (Huang et al. 2017a; Garipov et al. 2018). Additionally, our method provides a
deterministic procedure of going between single network models and ensembles given a
certain amount of parameters. Major sources of diversity in neural network ensembles
are random weight initialization and stochastic training, both of which we incorporate

in our framework.

Depth-Equivalent and Width-Equivalent Ensembles. Convolutional neural net-
work architectures are determined by two design knobs — the depth and the width factor.
Corresponding to these two design knobs, we create two classes of ensembles: depth-
equivalent ensembles and width-equivalent ensembles. These are depicted in Figure 5.1:
In depth-equivalent ensembles, the depth of the individual ensemble networks is the
same as S (i.e., d), and the width factor is set to the highest possible value (i.e., w’)
without exceeding the parameter budget of |S|. In width-equivalent ensembles, on the
other hand, the width factor is conserved across all ensemble networks (i.e., w), and the

depth is modulated to the highest possible value (i.e., d') without exceeding |S|:

'lU/ k. |E§w’,d)| < |S(w,d)| < k- |E(w’+1,d)’ d/ k. ‘Ei(w,d’)| < ‘S(w7d)| < k- ‘E-(w’dl+l)|

K3 7

!Given a single network with |S| number of parameters, there are {l“z |} (Stirling number of
the second kind) as many ways of forming ensembles of size k. This number grows at a similar
rate to exponential polynomials, e.g., {'"} ~ 10%°.

84

Architecture Data sets Epochs Lr schedule batch size

DenseNet SVHN 100 0.1, 0.01(30), 0.001(60) 128
DenseNet C10 and C100 120 0.1, 0.01(60), 0.001(90) 128
DenseNet Tiny ImageNet 90 0.1, 0.01(30), 0.001(60) 64

DenseNet ImageNet32-1K 90 0.1, 0.01(30), 0.001(60) 64

ResNet C10 250 0.1, 0.01(100), 0.001(200) 128
ResNet C100 500 0.1, 0.01(250), 0.001(375) 128
Wide ResNet C10 and C100 200 0.1, 0.01(100), 0.001(200) 128

Table 5.1: For all networks, we use training hyperparameters listed in their respective
papers (Ir: learning rate).

The above definition follows that neural networks in depth-equivalent ensembles have
higher depth than those in width-equivalent ensembles. Width-equivalent ensembles
contain wider neural networks than their depth-equivalent counterparts. In this way,
we isolate and study the effect of depth and width on ensemble accuracy as well as the

resource requirement.

Overall, our design space spans three classes of convolutional neural network designs:
(i) single network models, (ii) width-equivalent ensembles, and (iii) depth-equivalent
ensembles. Every class contains several model designs instantiated by the four-tuple
{w, d,|S|,C}. We next describe how we designed an exhaustive experimental framework

to cover various configurations of these four-tuples.

5.2 FRAMEWORK: DATA, ARCHITECTURES, AND METRICS

Datasets and Architectures. We include widely-used state-of-the-art network ar-
chitectures and data sets in our study. These include DenseNets, and (Wide) ResNets
architectures as well as SVHN, C10 and C100, and ImageNet datasets. Table 5.1 sum-
marizes these networks and training data sets as well as corresponding hyperparameters.
We implement our experimental framework in PyTorch and used an Nvidia V100 GPU

to run all experiments.

Evaluation Metrics. We study all three design classes — single network, width- and

depth-equivalent ensembles — across five metrics: (i) generalization accuracy, (ii) train-

85

(b) DenseNets CIFAR-100 (k=4)

(c) DenseNets Tiny ImageNet (k=4)

both ens.
v
=
3
= weq only
G
=}
o
L
—g deq only
=
s .
single
CpmRwRLLEw o w - w - w
SREBEEREER] S 5 S 3 ES
ERE B ERBCPEEPCBRB-82282 & & ¥ ® 8 8
= Sesseo-rr-tnw = = v s =W
[—hroabloralMin = B) n) o
skB 52282578585 s 3 3 % 2 s
both ens.
wv
=
5]
= weq only
G
=}
e
2
E deq only
=
]
single

W
SR

91
91
(43
43
8
43
8t
8t
8t
91
91
91
T
91
T
(43
8t
(43
8t
8t
8t

9T
9

9

8¢

0s

<]
8518zl
ocrlssly

0
0

soztlzsly
seezlsels
pIgplzsls
weslsela
rEPS 8518
8T801lTs|Tr
Teeerlgslan

L€
<6
YT
10
8¢
6L
€0°¢
LL9
s
9L
8
S6
9

= oy
L
5

= 9

width factor | depth | number of parameters (M)

Figure 5.2: The Ensemble Switchover Threshold (EST) occurs consistently across var-
ious network architectures and data sets. Beyond this resource threshold, ensemble
designs outperform single network models.

ing time per epoch, (iii) time to accuracy, (iv) inference time, and (v) memory usage.
When considered together, these metrics provide a holistic picture of the quality and

practicality of models.

5.3 GUIDELINE: ENSEMBLES OUTPERFORM SINGLE NETWORK MODELS AF-
TER A LOw TO MODERATE PARAMETER THRESHOLD

We observe that both classes of ensembles — depth- and width-equivalent — outperform
single network models after a resource threshold. We call this threshold the Ensemble
Switchover Threshold (EST). Beyond the EST, ensemble models achieve 1 to 3 percent

lower test error rates (across various architectures and data sets) compared with single

86

10+ (a) DenseNets CIFAR-10 (k=4) (b) DenseNets CIFAR-100 (k=4) (c) DenseNets Tiny ImageNet (k=4)

~single 34 49
9 deq 34 48
S . weq 3 47
23
g \ 30 \ 46
5 7 \\\ 28 X\ 45
5 > A 26 I 44
2 6 N Nl
8 \/\/\(24 43
5 e NI o
44+ e I 41]
AR wew e [N w PN 2 s 6
SEES 2E8EE Se8sR 2 258 2 2 %), 7
CEEE EEFEFIE S S T 2 e P 2
width factor | depth | number of parameters (M)
(d) ResNets CIFAR-10 (k=4) (e) ResNets CIFAR-100 (k=4) () VGGNet CIFAR-10 (k=4)

26

\ 2
304

Ty SR :
Y K\V/\\ N /\/\.\/ . /v\'““*“““\f

20 12

test error rate (%)
\

0s 191
9T 1¥T
9191
9TiTe
9 1¥T
8% | 9
9 1¥9
€196
o196
8% 196

910S |8t

8129 18p
‘11os 1¥T

L1
€T
'elos e

€197 18r
‘elzolce
'S I8¢ |8t

0S| 8%
812918t

[A3K4%
‘Tlovlce
I8y lTe

‘elv9lte
LITEIYY

7T
0
$0¥¢ 179196

Ts6Tlzel 8Tl
1wselor|ser
16'1¢ | 8r 8zl
$09 491821

LEO
950
9L'0
%0
S6°0
9Tl
9L
L1
£€1'T
T
10¢
8T'E
6L°€
£€0°S
LL9
w©8
€
9¢’
9L
8
$6
T
8T'E
6LE
£€0°S
LLy
w8
81
vTT
£9°C
6L°€
6¢°L
168
6701
vIst
1991
1oz
8S°€T

B

| number of parameters (M)

9
S oopl

width factor | dept]

Figure 5.3: Ensembles arrive at lower test error rates than single network models after
the EST has been reached.

networks having the same number of parameters.

The EST appears consistently across a wide range of data sets and architectures (Figure
5.2(a) through Figure 5.2(f)) as well as ensemble sizes (Figure 5.4(a) through Figure
5.4(c) and Figure 5.5(a) through Figure 5.5(c)). In these figures, we use discrete heat
maps to visualize which of the three design classes — single network models (single),
depth-equivalent ensembles (deq), and width-equivalent ensembles (weq) — dominates
in terms of generalization accuracy for a given resource budget. This resource budget
takes the form of the number of parameters (on the z-axis) and epochs (on the y-axis).
We also mark areas where both classes of ensembles outperform single network models.

Figure 5.3 shows the test error rates achieved on various data sets for DenseNet models.

The occurrence of EST both expands and questions the general consensus on the relative

effectiveness of ensemble versus single network models. First, even when allocated the

87

same amount of resources, ensemble models still outperform single network models.
This observation expands upon past empirical studies that only show how a k-network
ensemble is more accurate than any of the single network models that it contains (Lee
et al. 2015a; Huang et al. 2017a). Second, the EST occurs in low- to moderate-resource
settings. For instance, in all of our experiments, we observe the EST at the 1M to
1.5M parameter range? and after no later than half of the training epochs. This trend
challenges the widespread notion that neural network ensembles are useful only when
we have tons of resources at our disposal (Lee et al. 2015a; Ju et al. 2017). Overall, our
results indicate that ensembles of convolutional models are preferable to single network

models for a much wider range of use cases than previously understood.

On the Superior Generalization of Ensembles Under a Parameter Budget. To
interpret why ensembles outperform single network models under a parameter budget,
we use the phenomenon of diminishing returns on increasing model sizes. In the past,
this effect has been independently investigated by (Eigen et al. 2013) and (Dauphin and
Bengio 2013) for a single network model. We hypothesize that as we increase the num-
ber of parameters, single network models exhibit more diminishing returns and plateau
faster than ensemble networks. When the single network’s generalization accuracy starts
showing diminishing returns, the corresponding width-equivalent and depth-equivalent
ensembles have smaller networks with 1/k as many parameters (assuming the parame-
ters are spread equally along k ensemble networks). These individual networks in the
ensemble are affected less by the plateau because they have 1/k as many parameters as
the single network model. Thus, utilizing these networks in an ensemble leads to better
generalization accuracy overall because they do not hit the threshold of the diminish-
ing returns while still being able to benefit from the known properties that ensembles
provide: (i) They enrich the space of hypotheses that are considered by the base model
class and (ii) By averaging over various models, ensembles reduce the variance of base

models, smoothing out variations due to initialization and the learning process.

2Wide ResNets are an exception: This is because, compared to other convolutional archi-
tectures, Wide ResNets have an order of magnitude more parameters even for modest depths
and width factors. For instance, networks presented in the Wide ResNet paper have anywhere
between 8M to 37M parameters compared to the 1M to 10M range for DenseNets (Zagoruyko
and Komodakis 2016).

88

(a) DenseNets CIFAR-10 (k=4) (b) DenseNets CIFAR-10 (k=6)

(c) DenseNets CIFAR-10 (k=8)

s}
S

== =
2 10 100 g = both ens.
g - =
= 80 == = weq only
S E L
o) = =
_g X deq only
=]
g

single

1
or
9
(2
88
or

sy'1lor
991188
88119
szl
vsTlor
L0°€ 1 %9
61°¢ 88
S 2k401
€Ts |88
€Ts |88
17| v9

0

0
€Ts |88
17|79
leLlcin

L0°E 149
61°¢ |88
[2k401
el ss
96€l T
81
L€
68
€60/TI1
86049
strlor
L0°E 149
61°¢ |88
S 2k401
6|88
96€l | Tlt

2

width factor | depth factor | num param

Figure 5.4: The Ensemble Switchover Threshold moves to the right as we increase the
number of networks in the ensemble.

Next, we parse out how the data complexity and the composition of the ensemble

networks affect the EST and, in turn, the ranking of the three design classes.

Ensembles are Even More Effective for More Complex Data Sets. We observe
that the EST shifts closer to the origin as the training data set’s complexity increases.
This can be seen in Figure 5.2(a) through 5.2(c) where we train DenseNets on pro-
gressively more complex data sets (CIFAR-10, CIFAR-100, and Tiny ImageNet). This
observation indicates that ensemble models are preferable to single models when train-
ing on more complex data sets for an even wider range of available resources. This
observation again expands the utility of ensembles. There is theoretical and empiri-
cal work establishing that ensembles do better for complex data (Bonab and Can 2017;
Huang et al. 2017a). We, however, establish this phenomenon in the resource-equivalent
setting as opposed to past studies that do so for ensembles and single networks with

drastically different numbers of parameters.

Large Ensembles are Effective Under a Large Parameter Budget. As we
increase the number of networks k within an ensemble without increasing the parameter
budget, the overall accuracy of ensemble designs diminishes, pushing the EST to a higher
resource limit. Figure 5.4 demonstrates this phenomenon for DenseNets and Figure 5.5
shows it for ResNets. For instance, for DenseNet models, the EST moves from the 1.5M
range for k = 4 to the 3M range for kK = 6 and, then, to the 5M range for £k = 8. This

89

(a) ResNet CIFAR-10 (k=4) (b) ResNet CIFAR-10 (k=6) (c) ResNet CIFAR-10 (k=8)
= —

both ens.
Z
Q
2 weq only
-
=]
o}
_g deq only
=1
a

single

(23 |
8t
43 |
8t
8t
st
8t
8
8

91
91
91
T
91
T
©
T
T
43
©
s
43
s
91 ‘
91
91
T

10
L
9¢
91
T
S6
9
9
€
T
I
8
6.
£
L
s
LE
9¢
[y

width factor | depth | number of parameters (M)

Figure 5.5: The Ensemble Switchover Threshold moves to the right as we increase the
number of networks in the ensemble. Here, we demonstrate this phenomenon for ResNet
models.

(a) DenseNets CIFAR-10 (1_(:?) (b) DenseNets CIFAR-10 (k=6) (c) DenseNets CIFAR-10 (k=8)
——single

16 deq 18
= weq 16 20
E\J 14 deq avg. net. 14
2 n . net.
§E ‘weq avg. nel 12 15
‘g 10
o
% 8

6

4

olor
0l 9
olor
0188

stilor
991188
881119
stlan
vszlov

width factor | depth factor | num param (M)

Figure 5.6: As we increase the size of ensembles, accuracy of individual networks in the
ensemble decreases. This results in an overall reduction in ensemble accuracy shifting
the EST to the high-resource space.

shift can be explained by looking at individual accuracy of ensemble networks. Figure
5.6 shows test error rates of the ensemble as a whole as well as the average test error
rates of individual ensemble networks corresponding to Figure 5.4. We observe that as
we increase the number of networks & (from k£ = 4 in Figure 5.6(a) to k = 8 in Figure
5.6(c)), the individual test error rates (shown as dotted lines) increases. This increase
happens because individual networks’ size goes down (as we keep a fixed parameter
budget). This observation implies that larger-size ensembles are desirable over smaller

sizes only when we have a sufficient parameter budget to assign to every single network

90

in the model. As opposed to previous work, our experiments decouple the parameter
budget from the number of networks in the model. We discover that just increasing the

ensemble size without increasing the total number of parameters hurts accuracy.

Depth-Equivalent Ensembles Outperform Width-Equivalent Ensembles. We
observe that depth-equivalent ensembles are overall more accurate than width-equivalent
ensembles (as shown in Figure 5.3). They also consistently demonstrate EST at a lower
resource range. This can be explained by the fact that modern convolutional neural
network architectures provide better accuracy with increasing depth (Eigen et al. 2013;
Urban et al. 2016). Here, depth-equivalent ensembles have deeper ensemble networks
with better individual accuracy. Thus, when used together in an ensemble, they also
provide better ensemble accuracy. This way, when designing ensemble models for high

accuracy, deeper networks are preferable to wider networks.

EST vs. Memory Split Advantage. For a limited part of the design space, recent
work has observed the existence of a parameter limit beyond which depth-equivalent
ensembles outperform single networks. This is termed as the Memory Split Advantage
or the MSA (Kondratyuk et al. 2020). The EST, however, is not defined just with
respect to the number of parameters but also the number of training epochs, inference
cost, and memory usage as by only looking at these metrics in conjunction, we can get
a complete picture of the relative effectiveness of ensembles vs. single networks. In this
way, the EST subsumes the MSA, and we also verify the MSA across a significantly
larger design space (e.g., we consider 3x more data sets and twice as many architecture

types) than has been done before.

On the Instability of Width-Equivalent Ensembles. The performance of width-
equivalent ensembles (weq ensembles) exhibits unstable behavior. In particular, it has

local spikes when it comes to the test error rates. This is particularly pronounced for
the ResNet ensembles (Figure 5.3(d) and Figure 5.3(e)).

Our interpretation of this phenomenon is that these local spikes have to do with the
relative depth of networks in the width-equivalent ensemble designs. When comparing
designs that are close together in the parameter range, we observe that the designs with

more depth (of ensemble networks) generally outperform those with less depth even if

91

W
2
g
3

® single weq deq

deq

= single © weq © deq

= single

weq

g g
g 8

time to single accuracy (min.)
g
g

time to single accuracy (min.)
time to single accuracy (min.)

°

Sssn
SEEE o=
SEES 5E 2
s283 T2 <

52 =
ssss ZZ222 E

sctlorloe
LzTlvolse
8sel 91 9¢
pLel8818T

T
2 €65 18819¢

)

width factor | depth | number of parameters (M) width fa width factor | depth | number of parameters

(a) DenseNets C-10 (k=4) (b) DenseNets C-100 (k=4) (c) DenseNets Tiny INet (k=4)

= = £

E 2350] w gingl d & u singl d S w0l usingle ® weq * de

= single weq leq % a0 single weq leq ; g! q q

£ £ £ 600

g 3 g

S S &

; ; ﬁ) 400

2 2 £

B H s |

g g £ O

® F3ZRIRERRBEELEESE S s &% - 2 8 %2 B 8 5 2 o
R P “ = 5 2 - 2z = =
g2 28 Y5 3 B &8 3 2 = =
) = = = S g o v oz bHoe 2 0B
523 3 4 4 e 2 0B
width factor | depth | number of parameters (M) width factor | depth | number of parameters (M) width factor | depth | number of parameters (M)
(d) ResNets C-10 (k=4) (e) ResNets C-100 (k=4) (f) Wide ResNets C-10 (k=4)

Figure 5.7: When ensemble designs can provide better accuracy, they can also do so
faster than single network models (missing bars indicate that designs cannot reach single
network model accuracy).

the latter have more parameters. The depth of networks in the weq ensemble plays a
more dominant role than the total number of parameters they have. As an example of
this, consider Figure A(a) and A(b) in the revised version of the paper (ResNet CIFAR-
10 (k=4) and ResNet CIFAR-100 (k=4). Weq exhibit three spikes at 2.24M, 3.28M,
and 5.03M parameters. All three of these points are flanked on both sides by designs

that have similar number of parameters but more depth.

This observation is consistent with past observations that depth is more influential in

determining the accuracy of networks (Figen et al. 2013).

92

0
g
g
8

® single © weq deq ® single © weq deq = single weq deq

250

S @
g g
g8 8

training time per epoch (s)
g

training time per epoch (s)
g
training time per epoch (s)

61olovlzt
6e0lpolT

=

widt

E3

factor | depth | number of parameters (M) width factor | depth | number of parameters (M) width factor | depth | number of parameters (M)

(a) DenseNets C-10 (k=4) (b) DenseNets C-100 (k=4) (c) DenseNets Tiny INet (k=4)

80+
= single © weq deq = single © weq © deq = single © weq © deq

training time per epoch (s)

training time per epoch (s)
training time per epoch (s)

L8'slsely
LoTllzsly
yeaiszls |
61'8HITsI8
SEpslssls |

= -
b i}
By g
3 &

8

se8010zslet
eTTzilssltt |

I5=2E03 =32

S
il

width factor | depth | number of parameters (M) width factor | depth | number of parameters (M) width factor | depth | number of parameters (M)

(d) ResNets C-10 (k=4) (e) ResNets C-100 (f) Wide ResNets C-10 (k=4)

Figure 5.8: Depth-equivalent ensembles take longer to train per epoch as compared to
single network models. Width-equivalent ensembles, on the other hand, take comparable
time.

5.4 GUIDELINE: ENSEMBLES TRAIN FASTER AND PROVIDE SIMILAR INFER-
ENCE TIME

First, we analyze the training time. Despite taking longer per epoch, both ensemble
classes achieve the accuracy of single network models significantly faster for a consid-
erable part of the design space (e.g., 1.2x to 5x faster across our experiments). This
happens after the EST has been reached, i.e., when ensemble designs can provide better
accuracy, they can also do so faster than single network models. This can be seen in Fig-
ure 5.7. Here, we plot the total training time needed for any of the three design classes
to achieve the maximum accuracy of single network models under the same parameter

budget. Figure 5.8 shows the corresponding training time per epoch.

The Combined Depth Determines Per Epoch Training Time.. We observe that

both classes of ensembles, on average, take longer to train per epoch as compared to

93

® single © weq © deq ® single © weq © deq

o
time per layer (min.)

time per layer (min.)
time per layer (min.)

= gingle © we ‘

.
j |I||||||||||”H

PANL Bl 1 G N O 1 1 N D N S D R 1 W
400

300

total layers

200

total layers
total layers
Iy
2

@
o 3

%
=]
i

LE0l9zlot

£ 2 [s
N SO L
2 A
b i

208

width factor | depth | number of parameters (M) w1dlh factor | depth | number of parameters (M) width factor | depth | number of parameters (M)

(a) DenseNets on CIFAR-10 (b) ResNets on CIFAR-10 (c) Wide ResNets on CIFAR-10

Figure 5.9: We break down per epoch training time into: (i) time spent per layer and
(ii) total number of layers. We observe that the total number of layers in the model
more significantly determines the per epoch training time as compared to the width.
The ensemble size is 4 across all these experiments.

single network models as they train & networks instead of one. How much more time
ensembles take per epoch depends heavily on the ensemble networks’ design: This ad-
ditional time is negligible for width-equivalent ensembles whereas, for depth-equivalent
ensembles, it results in 2x more expensive per epoch training. This trend can be ex-
plained by how the training time per epoch scales with respect to the width and depth
of convolutional neural network models. This ultimately connects to how GPUs process
data, which is more favorable for networks with few wider layers as compared to those

that have several thinner layers.

We break down the training time per epoch of all designs into two constituents: time
spent per layer and number of layers. Figure 5.9shows this breakdown for various ar-
chitectures. We observe that the total number of layers in a model (for ensembles, this
is the sum of all networks’ depth) majorly determines the training time per epoch. For
the same parameter budget, depth-equivalent ensembles have proportionally more lay-
ers, whereas width-equivalent ensembles have proportionally more width. The average
time per layer depends on the width and does not increase significantly as we move
from depth-equivalent ensembles to width-equivalent ensembles. On the other hand,
the total number of layers scales linearly with depth. For the same parameter budget,

the total number of layers is significantly higher for depth-equivalent ensembles than

94

= single © weq © deq ® single © weq © deq

inference time per image (ms)
inference time per image (ms)
inference time per image (ms)

r
it
oz
21
8T

srolovlct
Tlovise
stilovloe
TTlpolsT
S €lrolog
L€I88I8T

E3

width factor | depth | number of parameters (M) width factor | depth | number of parameters (M) width factor | depth | number of parameters (M)

(a) DenseNets C-10 (k=4) (b) DenseNets C-100 (k=4) (c) DenseNets Tiny INet (k=4)

°
s

= single = weq © deq ® single © weq © deq

= single © weq © deg

e

o
N

o

o

inference time per image (ms)

inference time per image (ms)
inference time per image (ms)

91

L8slsTly |
oellssly |
'e7isTls |
SEPSISSI8

]
>
)

Lozilesly 4

sesollzsler |
erTeilsslet

S
2

y1eleolve

96029191
LT1igelvT

=
DS hxs an
23 232

N
5

depth | number of parameters (M) width factor | depth | number of parameters (M)

LEO

width factor | depth | number of parameters (M) width factor

(d) ResNets C-10 (k=4) (e) ResNets C-100 (k=4) (f) Wide ResNets C-10 (k=4)

Figure 5.10: Width-equivalent ensembles take comparable time to single network models
for inference. Depth-equivalent ensembles take significantly longer.

the other two designs, resulting in higher per epoch training.

From a GPU perspective, wider and shallower networks are more efficient to execute
than narrower and deeper networks for the same parameter budget. This can be at-
tributed to the massive amount of data parallelism in modern GPUs. Increasing the
network’s width just increases the number of kernels within layers. This increase more
efficiently utilizes GPU’s massive capacity to perform the same operation on multiple
data items. On the other hand, deepening a network introduces new layers (and opera-

tions) that require additional synchronization steps slowing down the overall execution.

Networks in Ensemble Models Converge Faster than Single Network Models
for the Same Parameter Budget. The fact that ensemble designs can reach the same
accuracy faster than single network models can be attributed to the fact that, for the
same parameter budget, all networks in the ensemble model are smaller than the single
network model. Smaller networks are known to converge faster albeit to lower accuracy

than larger networks.

95

However, we observe that the distinct advantage ensemble designs provide over the
single model is that when we use smaller networks in an ensemble, we get the best of
both worlds. We converge faster at an individual network level, and ensembling makes

up for the generalization accuracy.

Overall, these observations again question the conventional wisdom of ensembles being
significantly slower to train than single network models. When we analyze the design
space under a fixed parameter budget, we uncover that for a vast range of the design
space: (i) width-equivalent ensembles introduce negligible overhead to per epoch train-
ing time as compared to single network models and (ii) both ensemble designs achieve

and surpass accuracy of single network models in considerably less training time.

Width-Equivalent Ensembles Provide Competitive Inference Time. We pro-
vide the inference time per image in Figure 5.10 and observe a similar trend to train-
ing time per epoch. While depth-equivalent ensembles are significantly slower, width-
equivalent ensembles provide comparable inference speed to single network models.
Again, this questions conventional wisdom that expects ensembles to be substantially

slower in inference.

5.5 GUIDELINE: ENSEMBLES ARE MEMORY EFFICIENT

Regarding memory usage we observe that the trend favors both classes of ensemble
designs over single network models. Figure 5.11 provides the amount of memory used
as we train depth-equivalent ensembles, width-equivalent ensembles, and single network
models. This is the minimum amount of memory that a GPU needs to train any of
these designs for the batch sizes provided in Table 5.1. This memory is majorly used to

store model parameters and intermediate results.

The superior memory efficiency of ensemble models is because when we train a k-
networks ensemble, at any point during the training process, we only need as much
memory to train one of the k networks (having % as many parameters compared to the
single network). This observation has two important implications: First, we can use

larger batch sizes for the same GPU while training an ensemble of networks. This, for

96

® single © weq © deq = single weq © deq

max. memory usage (GB)
max. memory usage (GB)

max. memory usage (GB)

6rolovizt
6 0lpolet

'1lovisT
L1lovios
TTP9I8T
S €lr9l9g
pLEI88I8T

Suesy
2 2 S

width factor | depth | number of parameters (M)

(c) DenseNets Tiny INet (k=4)

g
width factor | depth | number of parameters (M)

(a) DenseNets C-10 (k=4)

g) g)

O ,5| ®single = weq © deq C 5] ®single = weq © deq e = single

2 H g

= z z

S s g

£ g :

£ £ |

-) s O ® 5 =2 5 B
2 z 2 8 2 88 2 8 3
2 2 %z 5 2 2 0w 2z 3
g gLso z Toss s g F F 3§
3 & = 2 a8
width factor | depth | number of parameters (M) width factor | depth | number of parameters (M) width factor | depth | number of parameters (M)
(d) ResNets C-10 (k=4) (e) ResNets C-100 (k=4) (f) Wide ResNets C-10 (k=4)

Figure 5.11: Both classes of ensemble models are significantly more memory efficient.

instance, is useful when training complex data sets such as ImageNet. Additionally, we
can feasibly train the same number of parameters in an ensemble using lower-end GPUs

with less memory.

97

MotherNets: Rapid Deep Ensemble Learning

We now present MotherNets in detail. MotherNets enable higher accuracy and practical
training cost for large and diverse neural network ensembles. A MotherNet captures
the structural similarity across some or all members of a deep neural network ensemble,
allowing us to share data movement and computation costs across these networks. We
first train a single or a small set of MotherNets, and, subsequently, we generate the
target ensemble networks by transferring the function from the trained MotherNet(s).
Then, we continue to train these ensemble networks, which now converge drastically
faster than training from scratch. In this chapter, we describe how to train ensembles
through MotherNets and experimentally analyze how MotherNets establishes a Pareto-

frontier for the accuracy-training time tradeoff of ensemble networks.
6.1 CONSTRUCTING MOTHERNETS

Definition: MotherNet. Given a cluster of k£ neural networks C = {Ny, Na, ... N},
where N; denotes the i-th neural network in C, the MotherNet M, is defined as the

largest network from which all networks in C' can be obtained through function-preserving

98

Specifications of ensemble networks . MotherNet . Hatched networks

= |

oo ool o83

cluster

g1

i

selected for O neuron
MotherNets euro
cluster g
input layers
s.4adpj indimo

pauren O

uondu

) .
< % Step 1: Construct the MotherNet per | Step 2: Train the MotherNet using the | Step 3: Hatch ensemble networks
cluster to capture the largest structural | entire data set. This allows us to “share by function-preserving
commonality (shown in bold). epochs” amongst ensemble networks. ' transformations and further train.

Figure 6.1: MotherNets train an ensemble of neural networks by first training a set of
MotherNets and transferring the function to the ensemble networks. The ensemble net-
works are then further trained converging significantly faster than training individually.

transformations. MotherNets divide an ensemble into one or more such network clusters

and construct a separate MotherNet for each.

Constructing a MotherNet for Fully-Connected Networks. Assume a cluster
C of fully-connected neural networks. The input and the output layers of M, have the
same structure as all networks in C| since they are all trained for the same task. M,
is initialized with as many hidden layers as the shallowest network in C. Then, we
construct the hidden layers of M, one-by-one going from the input to the output layer.
The structure of the i-th hidden layer of M, is the same as the i-th hidden layer of the
network in C' with the least number of parameters at the i-th layer. Figure 6.1 shows
an example of how this process works for a toy ensemble of two three-layered and one
four-layered neural networks. Here, the MotherNet is constructed with three layers.
Every layer has the same structure as the layer with the least number of parameters at

that position (shown in bold in Figure 6.1 Step (1)).

Algorithm 6.1 describes how to construct the MotherNet for a cluster of fully-connected
neural networks. We proceed layer-by-layer selecting the layer with the least number of

parameters at every position.

Constructing a MotherNet for Convolutional Networks. Convolutional neural

network architectures consist of blocks of one or more convolutional layers separated

99

by pooling layers (He et al. 2016; Shazeer et al. 2017; Simonyan and Zisserman 2015;
Szegedy et al. 2015). These blocks are then followed by another block of one or more
fully-connected layers. For instance, VGGNets are composed of five blocks of convolu-
tional layers separated by max-pooling layers, whereas, DenseNets consist of four blocks
of densely connected convolutional layers. For convolutional networks, we construct the
MotherNet M, block-by-block instead of layer-by-layer. The intuition is that deeper
or wider variants of such networks are created by adding or expanding layers within
individual blocks instead of adding them all at the end of the network. For instance,
VGG-C (with 16 convolutional layers) is obtained by adding one layer to each of the last
three blocks of VGG-B (with 13 convolutional layers) (Simonyan and Zisserman 2015).
To construct the MotherNet for every block, we select as many convolutional layers to
include in the MotherNet as the network in C' with the least number of layers in that
block. Every layer within a block is constructed such that it has the least number of
filters and the smallest filter size of any layer at the same position within that block.
An example of this process is shown in Figure 6.2. Here, we construct a MotherNet for
three convolutional neural networks block-by-block. For instance, in the first block, we
include one convolutional layer in the MotherNet having the smallest filter width and

the least number of filters (i.e., 3 and 32 respectively).

Algorithm 6.2 provides a detailed strategy to construct the MotherNet for a cluster of
convolutional neural networks. We proceed block-by-block, where each block is com-
posed of multiple convolutional layers. The MotherNet has as many blocks as the net-
work with the least number of blocks. Then, for every block, we proceed layer-by-layer
and construct the MotherNet layer at every position as follows: First, we compute the
least number of convolutional filters and convolutional filter sizes at that position across
all ensemble networks. Let these be F,;, and S,,;, respectively. Then, in MotherNet,

we include a convolutional layer with F,;, filters of S,,;, size at that position.

Constructing MotherNets for Ensembles of Neural Networks with Different
Sizes and Topologies. By construction, the overall size and topology (sequence of
layer sizes) of a MotherNet is limited by the smallest network in its cluster. If we were
to assign a single cluster to all networks in an ensemble that has a large difference in

size and topology between the smallest and the largest networks, there will be a corre-

100

3:64
Sl[3:72] 3 [5:64 | 3 [3764 | 3564
] : NEE - [3 .
bS] .)

S3i6a | 0 [5i64 | 0 [1ie4] 1:64
) : :

Sy [3:64] [3iea] 0 [3:04] 3: 64
&g\ 3 3

N

13064 3: 64

25 3 3
SE [3:64] [3:32] ¢ [3:64] 3:32
N : :
‘ Net 1 Net 2 Net 3 ‘ M.
Cluster of ensemble networks C MotherNet

Figure 6.2: Constructing MotherNet for convolutional neural networks block-by-block.
For each layer, we select the layer with the least number of parameters from the ensemble
networks (shown in bold rectangles) (Notation: <filter_-width> : <filter_number>).

spondingly large difference between at least one ensemble network and the MotherNet.
This may lead to a scenario where the MotherNet only captures an insignificant amount
of commonality. This would negatively affect performance as we would not be able to
share significant computation and data movement costs across the ensemble networks.

This property is directly correlated with the size of the MotherNet.

In order to maintain the ability to share costs in diverse ensembles, we partition such an
ensemble into g clusters, and for every cluster, we construct and train a separate Moth-
erNet. To perform this clustering, the m networks in the ensemble E' = { N1, No, ... N, }
are represented as vectors E, = {V1,Va,...V,,} such that Vij stores the size of the j-
th layer in N;. These vectors are zero-padded to a length of max({|N1|, |Na|,...|Nn|})
(where | V;| is the number of layers in N;). For convolutional neural networks, these vec-
tors are created by first creating similarly zero-padded sub-vectors per block and then
concatenating the sub-vectors to get the final vector. In this case, to fully represent

convolutional layers, Vij stores a 2-tuple of filter sizes and number of filters.

Given a set of vectors F,, we create g clusters using the balanced K-means algorithm

while minimizing the Levenshtein distance between the vector representation of networks

101

Algorithm 6.1 Constructing the MotherNet for fully-connected neural networks

Input: E: ensemble networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes
M.input.num_param < E[0].input.num_param;
M.output.num_param < E[0].output.num_param;
M.num layers < getShallowestNetwork(E).num_layers;

// set hidden layer sizes
for i < 0 ... M.num_layers-1 do
| M.layers]i].num_param < getMin(E,i);
end
return M;

// Get the min. size layer at posn

Function getMin(E,posn)

min < E[0].layers[posn|.num_param;

for j < 0...len(E)-1 do
if Efj].layers[posn].num_param < min then

| min <+ E[j].layers[posn].num_param

end

end

return min;

in a cluster and its MotherNet (Levenshtein 1966; MacQueen 1967). The Levenshtein
or the edit distance between two vectors is the minimum number of edits — insertions,
deletions, or substitutions — needed to transform one vector to another. By minimizing
this distance, we ensure that, for every cluster, the ensemble networks can be obtained
from their cluster’s MotherNet with the minimal amount of edits constrained on g. Dur-
ing every iteration of the K-means algorithm, instead of computing centers of candidate
clusters, we construct MotherNets corresponding to every cluster. Then, we use the edit

distance between these MotherNets and all networks to perform cluster reassignments.

Constructing MotherNets for Ensembles of Diverse Architecture Classes. An
individual MotherNet is built for a cluster of networks that belong to a single architec-
ture class. Each architecture class has the property of function-preserving navigation.

This is to say that given any member of this class, we can build another member of

102

Algorithm 6.2 Constructing the MotherNet for convolutional neural networks
block-by-block.

Input: E: ensemble of convolutional networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes and number of blocks
M.input.num_param < E[0].input.num_param;
M.output.num_param <+ E[0].output.num_param;
M.num_blocks < getShallowestNetwork(E).num_blocks;

// set hidden layers block-by-block

for k < 0 ... M.num_blocks-1 do

M.block[k].num_hidden < getShallowestBlockAt(E k).num_hidden; // select the
shallowest block

for i < 0 ... M.block[k].num_hidden-1 do
M.block[k].hidden[i]..num_filters, = M.block[k].hidden[i]..filter size =~ <+ get-
Min(E,k,i)

end

end
return M;

// Get minimum number of filters and filter size at posn

Function getMin(E,blk,posn)

min_num filters <— E[0].block[blk].hidden[posn]|.num _filters;
min_filter_size <— E[0].block[blk].hidden [posn] filter_size;
for j < 0...len(E) do
if E[j].block[blk].hidden[posn].num_filters < min_num_filters then
| min_num filters «— E[j].block[blk].hidden[posn].num _filters;
end
if Efj].block[blk].hidden[posn].filter_size < min_filter_size then
| min_filter_size < E[j].block[blk].hidden[posn].filter_size;
end

end
return min_num_filters, min_filter_size;

this class with more parameters but having the same function. Multiple types of neural
networks fall under the same architecture class (Cai et al. 2018). For instance, we can
build a single MotherNet for ensembles of AlexNets, VGGNets, and Inception Nets as

well as one for DenseNets and ResNets. To handle scenarios when an ensemble con-

103

tains members from diverse architecture classes i.e., we cannot navigate the entire set
of ensemble networks in a function-preserving manner, we build a separate MotherNet

for each class (or a set of MotherNets if each class also has networks of diverse sizes).

6.2 TRAINING MOTHERNETS

Overall, the techniques described in the previous paragraphs allow us to create g Moth-
erNets for an ensemble, being able to capture the structural similarity across diverse
networks both in terms of architecture and topology. We now describe how to train an
ensemble using one or more MotherNets to help share the data movement and compu-

tation costs amongst the target ensemble networks.

Training Step 1: Training the MotherNets. First, the MotherNet for every cluster
is trained from scratch using the entire data set until convergence. This allows the
MotherNet to learn a good core representation of the data. The MotherNet has fewer
parameters than any of the networks in its cluster (by construction) and thus it takes

less time per epoch to train than any of the cluster networks.

Training Step 2: Hatching Ensemble Networks. Once the MotherNet correspond-
ing to a cluster is trained, the next step is to generate every cluster network through a
sequence of function-preserving transformations that allow us to expand the size of any
feed-forward neural network, while ensuring that the function (or mapping) it learned
is preserved (Chen et al. 2016). We call this process hatching and there are two distinct
approaches to achieve this: Net2Net increases the capacity of the given network by
adding identity layers or by replicating existing weights (Chen et al. 2016). Network
Morphism, on the other hand, derives sufficient and necessary conditions that when
satisfied will extend the network while preserving its function and provides algorithms
to solve for those conditions (Wei et al. 2016, 2017).

In MotherNets, we adopt the first approach i.e., Net2Net. Not only is it conceptually
simpler but in our experiments we observe that it serves as a better starting point for
further training of the expanded network as compared to Network Morphism. Over-

all, function-preserving transformations are readily applicable to a wide range of feed-

104

forward neural networks including VGGNets, ResNets, FractalNets, DenseNets, and
Wide ResNets (Chen et al. 2016; Wei et al. 2016, 2017; Huang et al. 2017b). As such
MotherNets is applicable to all of these different network architectures. In addition,
designing function-preserving transformations is an active area of research and better

transformation techniques may be incorporated in MotherNets as they become available.

Hatching is a computationally inexpensive process that takes negligible time compared
to an epoch of training (Wei et al. 2016). This is because generating every network in
a cluster through function preserving transformations requires at most a single pass on

layers in its MotherNet.

Training Step 3: Training Hatched Networks. To explicitly add diversity to the
hatched networks, we randomly perturb their parameters with gaussian noise before
further training. This breaks symmetry after hatching and it is a standard technique to
create diversity when training ensemble networks (Hinton et al. 2015; Lee et al. 2015b;
Wei et al. 2016, 2017). Further, adding noise forces the hatched networks to be in a
different part of the hypothesis space from their MotherNets.

The hatched ensemble networks are further trained converging significantly faster com-
pared to training from scratch. This fast convergence is due to the fact that by initial-
izing every ensemble network through its MotherNet, we placed it in a good position in
the parameter space and we need to explore only for a relatively small region instead
of the whole parameter space. We show that hatched networks typically converge in a

very small number epochs.

We experimented with both full data and bagging to train hatched networks. We use
full data because given the small number of epochs needed for the hatched networks,

bagging does not offer any significant advantage in speed while it hurts accuracy.

Parallel Training. MotherNets create a new schedule for “sharing epochs” amongst
networks of an ensemble but the actual process of training in every epoch remains un-
changed. As such, state-of-the-art approaches for distributed training such as parameter-
server (Dean et al. 2012) and asynchronous gradient descent (Gupta et al. 2016; Iandola
et al. 2016) can be applied to fully utilize as many machines as available during any

stage of MotherNets’ training.

105

6.3 NAVIGATING ACCURACY-TRAINING TIME TRADEOFF

MotherNets can navigate the tradeoff between accuracy and training time by controlling
the number of clusters g, which in turn controls how many MotherNets we have to train
independently from scratch. For instance, on one extreme if g is set to m, then every
network in F will be trained independently, yielding high accuracy at the cost of higher
training time. On the other extreme, if g is set to one then, all ensemble networks
have a shared ancestor and this process may yield networks that are not as diverse or

accurate, however, the training time will be low.

MotherNets expose g as a tuning knob. As we show in our experimental analysis,
MotherNets achieve a new Pareto frontier for the accuracy-training cost tradeoff which
is a well-defined convex space. That is, with every step in increasing g (and consequently
the number of independently trained MotherNets) accuracy does get better at the cost
of some additional training time and vice versa. Conceptually this is shown in Figure ?7.
This convex space allows robust and predictable navigation of the tradeoff. For example,
unless one needs best accuracy or best training time (in which case the choice is simply
the extreme values of g), they can start with a single MotherNet and keep adding
MotherNets in small steps until the desired accuracy is achieved or the training time
budget is exhausted. This process can further be fine-tuned using known approaches
for hyperparameter tuning methods such as bayesian optimization, training on sampled

data, or learning trajectory sampling (Goodfellow et al. 2016).

6.4 SHARED-MOTHERNETS: ENABLING FAST ENSEMBLE INFERENCE

Shared-MotherNets. We introduce shared-MotherNets to reduce inference time and
memory requirement of ensembles trained through MotherNets. In shared-MotherNets,
after the process of hatching (step 2 from §6.2), the parameters originating from the
MotherNet are incrementally trained in a shared manner. This yields a neural network
ensemble with a single copy of MotherNet parameters reducing both inference time and

memory requirement.

106

oo o
[o—o-8-=8]
oo 8] |

|9-8-8--8—0]

Hatched ensemble networks Shared MotherNets

Figure 6.3: To construct a shared-MotherNet, parameters originating from the Moth-
erNet are combined together in the ensemble.

Constructing a Shared-MotherNet. Given an ensemble E of K hatched networks
(i.e., those networks that are obtained from a trained MotherNet), we construct a shared-
MotherNet S as follows: First, S is initialized with K input and output layers, one for
every hatched network. This allows S to produce as many as K predictions. Then,
every hidden layer of S is constructed one-by-one going from the input to the output
layer and consolidating all neurons across all of E that originate from the MotherNet.
To consolidate a MotherNet neuron at layer [;, we first reduce the k copies of that
neuron (across all K networks in F) to a single copy. All inputs to the neuron that may
originate from various other neurons in the layer [;_; across different hatched networks
are added together. The output of this consolidated neuron is then forwarded to all
neurons in the next layer ;11 (across all hatched networks) which were connected to

the consolidated neuron.

Figure 6.3 shows an example of how this process works for a simple ensemble of three
hatched networks. The filled circles represent neurons originating from the Mother-
Net and the colored circles represent neurons from ensemble networks. To construct
the shared-MotherNet (shown on the right), we go layer-by-layer consolidating neurons
originating from MotherNet.

The shared-MotherNet is then trained incrementally. This proceeds similarly to step 3

from §6.2, however, now through the shared-MotherNet, the neurons originating from

107

the MotherNet are trained jointly. This results in an ensemble that has K outputs,
but some parameters between the networks are shared instead of being completely
independent. This reduces the overall number of parameters, improving both the speed

and the memory requirement of inference.

Memory Reduction. Assume an ensemble E = {Ny, N1,... Nx_1} of K neural net-
works (where N; denotes a neural network architecture in the ensemble with | V;| number
of parameters) and its MotherNet M. The number of parameters in the ensemble is

reduced by a factor of x given by:

k| M|
St IV

6.5 EXPERIMENTAL ANALYSIS

We demonstrate that MotherNets enable a better training time-accuracy tradeoff than
existing fast ensemble training approaches across multiple data sets and architectures.
We also show that MotherNets make it more realistic to use large neural network en-

sembles i.e., those having dozens of neural networks.

Baselines. We compare against five state-of-the-art methods spanning both techniques
that train all ensemble networks individually, i.e., Full Data (FD) and Bagging (BA), as
well as approaches that generate ensembles by training a single network, i.e., Knowledge
Distillation (KD), Snapshot Ensembles (SE), and TreeNets (TN).

Evaluation Metrics. We capture both the training cost and the resulting accuracy
of an ensemble. For the training cost, we report the wall clock time as well as the
monetary cost for training on the cloud. For ensemble test accuracy, we report the
test error rate under the widely used ensemble-averaging method (Van der Laan et al.
2007; Guzman-Rivera et al. 2012, 2014; Lee et al. 2015b). Experiments with alternative
inference methods (e.g., super learner and voting (Ju et al. 2017)) showed that the

method we use does not affect the overall results in terms of comparing the algorithms.

108

Ens.

Member networks

Param. SE alternative

Param.

V5

D5

R10

V25

V100

VGG 13, 16, 16 A, 16B, and 19 from
the VGGNet paper (Simonyan and
Zisserman 2015)

Two variants of DenseNet-40 (with
12 and 24 convolutional filters
per layer) and three variants of
DenseNet-100 (with 12, 16, and
24 filters per layer) (Huang et al.
2017b)

Two variants each of ResNet 20, 32,
44, 56, and 110 from the ResNet pa-
per (He et al. 2016)

25 wvariants of VGG-16 with dis-
tinct architectures created by pro-
gressively varying one layer from
VGGI16 in one of three ways: (i) in-
creasing the number of filters, (ii)
increasing the filter size, or (iii) ap-
plying both (i) and (ii)

100 variants of VGG-16 created as
described above

682M VGG-16 x 5

17™M Dense-60 x 5

327M R-56 x 10

3410M VGG-16 x 25

13640M VGG-16 x 100

690M

17.3M

350M

3450M

13800M

Table 6.1: We experiment with ensembles of various sizes and network architectures.

Ensemble Networks.

We experiment with ensembles of various convolutional ar-

chitectures such as VGGNets, ResNets, Wide ResNets, and DenseNets. Ensembles of

these architectures have been extensively used to evaluate fast ensemble training ap-

proaches (Lee et al. 2015a; Huang et al. 2017a). Each of these ensembles are composed

of networks having diverse architectures as described in Table 6.1.

To provide a fair comparison with SE (where the snapshots have to be from the same

network architecture), we create snapshots having comparable number of parameters

to each of the ensembles described above. This comparable alternatives we used for SE

are also summarized in Table 6.1.

109

For TN, we varied the number of shared layers and found that sharing the 3 initial
layers provides the best accuracy. This is similar to the optimal proportion of shared
layers in the TreeNets paper (Lee et al. 2015a). TN is not applicable to DenseNets or
ResNets as it is designed only for networks without skip-connections (Lee et al. 2015a).

We omit comparison with TN for such ensembles.

Training Setup. For all training approaches we use stochastic gradient descent with a
mini-batch size of 256 and batch-normalization. All weights are initialized by sampling
from a standard normal distribution. Training data is randomly shuffled before every
training epoch. The learning rate is set to 0.1 with the exception of DenseNets. For
DenseNets, we use a learning rate of 0.1 to train MotherNets and 0.01 to train hatched
networks. This is inline with the learning rate decay used in the DenseNets paper
(Huang et al. 2017b). For FD, KD, TN, and MotherNets, we stop training if the training
accuracy does not improve for 15 epochs. For SE we use the optimized training setup
proposed in the original paper (Huang et al. 2017a), starting with an initial learning

rate of 0.2 and then training every snapshot for 60 epochs.

Data Sets. We experiment with a diverse array of data sets: SVHN, CIFAR-10, and
CIFAR-100 (Krizhevsky 2009; Netzer et al.). The SVHN data set is composed of images
of house numbers and has ten class labels. There are a total of 99K images. We use
73K for training and 26K for testing. The CIFAR-10 and CIFAR-100 data sets have 10
and 100 class labels respectively corresponding to various images of everyday objects.

There are a total of 60K images — 50K training and 10K test images.

Hardware Platform. All experiments are run on the same server with Nvidia Tesla
V100 GPU.

6.5.1 BETTER ACCURACY-TRAINING TIME TRADEOFF

We first show how MotherNets strike an overall superior accuracy-training time tradeoff
when compared to existing fast ensemble training approaches. Figure 6.4 shows results
across all our test data sets and ensemble networks. All graphs in Figure 6.4 depict the

tradeoff between training time needed versus accuracy achieved. The core observation

110

53 - 31
8.5 | single model single model 55 single model 52 single model
o ’ * KD 52 # KD o * xo 30 ¢ single model 5 *uw
.
é ’ 1 5 1 1 2 © 48 |® MN(e=1)
2 75 S1F MNesn 28 ® N (e=1) - &
E 7w 2 45} @] 46
;_‘ e P 5 4 SE - MN (g=1) 27
g 7 K o o 44
=] MN (e=2) g%, MN (g=2) 2% MN (=2) ¥ SE
o 65 /Oa 49 @ MN(e=2) 4 1 42
- MN(g=3)@ %, oo 25 MN (e=5 ““ [MN (g=2)
g o N 48)@ M@ 35 o.NES < 41 ewes) -
- MN (g=4) 9. ° MN (g=3) o /A ° 24 O _MN (g=25)/ @ MN (e=1)MN (25
MN (g=5)/FD]| MN (g=4) @ MN (g=10)/FD MN (g=10) D @)
55 : 47 3 2 38
0 4 8 1216 4 8 12 16 20 24 20 30 40 50 60 70 20 40 60 80 100 4 8 12 16 20 24
training time (hrs) training time (hrs) training time (hrs) training time (hrs) training time (hrs)

(a) V5 (C-10) (b) D5 (C-10) (c) R10 (C-10) (d) V25 (C-100) (e) V25 (SVHN)

Figure 6.4: MotherNets provide consistently better accuracy-training time tradeoff when
compared with existing fast ensemble training approaches across various data sets, ar-
chitectures, and ensemble sizes.

from Figure 6.4 is that across all datasets and networks, MotherNets help establish a
new Pareto frontier of this tradeoff. The different versions of MotherNets shown in
Figure 6.4 represent different numbers of clusters used (g). When g=1, we use a single
MotherNet, optimizing for training time, while when g becomes equal to the ensemble
size, we optimize for accuracy (effectively this is equal to FD as every network is trained

independently in its own cluster).

The horizontal line at the top of each graph indicates the accuracy of the best-performing
single model in the ensemble trained from scratch. This serves as a benchmark and, in
the vast majority of cases, all approaches do improve over a single model even when
they have to sacrifice on accuracy to improve training time. MotherNets is consistently

and significantly better than that benchmark.

Next we discuss each individual training approach and how it compares to MotherNets.

MotherNets vs. KD, TN, and BA. MotherNets (with g=1) is 2x to 4.2x faster
than KD and results in up to 2 percent better test accuracy. KD suffers in terms of
accuracy because its ensemble networks are more closely tied to the base network as
they are trained from the output of the same network. KD’s higher training cost is
because distilling is expensive. Every network starts from scratch and is trained on
the data set using a combination of empirical loss and the loss from the output of the
teacher network. We observe that distilling a network still takes around 60 to 70 percent

of the time required to train it using just the empirical loss.

111

V5 D5 R10 V25 V25

Ci10 C10 C10 C100 SVHN
MN 96.71 97.43 98.61 87.5 97.17
SE 96.03 9691 97.11 86.9 97.3

Table 6.2: MotherNets (with g=1) give better oracle test accuracy compared to Snap-
shot ensembles.

To achieve comparable accuracy to MotherNets (with g=1), TN requires up to 3.8x
more training time on V5. In the same time budget, MotherNets can train with g=4
providing over one percent reduction in test error rate. The higher training time of
TN is due to the fact that it combines several networks together to create a monolithic
architecture with various branches. We observe that training this takes a significant
time per epoch as well as requires more epochs to converge. Moreover, TN does not

generalize to neural networks with skip-connections.

Figure 6.4 does not show results for BA because it is an outlier. BA takes on average
73 percent of the time FD needs to train but results in significantly higher test error
rate than any of the baseline approaches including the single model. Compared to BA,
MotherNets is on average 3.6 x faster and results in significantly better accuracy — up
to 5.5 percent lower absolute test error rate. These observations are consistent with
past studies that show how BA is ineffective when training deep neural networks as it

reduces the number of unique data items seen by individual networks (Lee et al. 2015a).

Overall, the low test error rate of MotherNets when compared to KD, TN, and BA
stems from the fact that transferring the learned function from MotherNets to target
ensemble networks provides a good starting point as well as introduces regularization for
further training. This also allows hatched ensemble networks to converge significantly

faster, resulting in overall lower training time.

Training Time Breakdown. To better understand where the time goes during the
training process, Figure 6.5 provides the time breakdown per ensemble network. We
show this for the D5 ensemble and compare MotherNets (with g=1) with individual
training approaches FD, BA, and KD. While other approaches spend significant time

112

training each network, MotherNets, can train these networks very quickly after having
trained the core MotherNet (black part in the MotherNets stacked bar in Figure 6.5).

We observe similar time breakdown across all ensembles in our experiments.

6.5.2 MOTHERNETS vS. SE AND SCALING TO LARGE ENSEMBLES

Across all experiments in Figure 6.4, SE is the closest baseline to MotherNets. In effect,
SE is part of the very same Pareto frontier defined by MotherNets in the accuracy-
training cost tradeoff. That is, it represents one more valid point that can be useful
depending on the desired balance. For example, in Figure 6.4a (for V5 CIFAR-10), SE
sacrifices nearly one percent in test error rate compared to MotherNets (with g=1) for a
small improvement in training cost. We observe similar trends in Figure 6.4c and 6.4d).
In Figure 6.4b, SE achieves a balance that is in between MotherNets with one and two
clusters. However, when training V25 on SVHN (Figure 6.4e) SE is in fact outside the

Pareto frontier as it is both slower and achieves worst accuracy.

Overall, MotherNets enables drastic improvements in either accuracy or training time

compared to SE by being able to control and navigate the tradeoff between the two.

Oracle Accuracy. Also, Table 6.2 shows that MotherNets (with g=1) enable better
oracle test accuracy when compared with SE across all our experiments. This is the
accuracy if an oracle were to pick the prediction of the most accurate network in the
ensemble per test element (Guzman-Rivera et al. 2012, 2014; Lee et al. 2015b). Oracle
accuracy is an upper bound for the accuracy that any ensemble inference technique
could achieve. This metric is also used to evaluate the utility of ensembles when they
are applied to solve Multiple Choice Learning (MCL) problems (Guzman-Rivera et al.
2014; Lee et al. 2016; Brodie et al. 2018).

Scaling to Very Large Ensembles. As we discussed before, large ensembles help
improve accuracy and thus ideally we would like to scale neural network ensembles to
large number of models as it happens for other ensembles such as random forests (Oshiro
et al. 2012; Bonab and Can 2016, 2017). Our previous results were for small to medium
ensembles of 5, 10 or 25 networks. We now show that when it comes to larger ensembles,

MotherNets dominate SE in both how accuracy and training time scale.

113

MN mm DN3 7=

= DNI 3 DN4 [
= 20t DN2 g DN5 = |
<=
N
O
15+
g
N
en 10 -
=
. v
£ s :
=
0
FD KD BA MN,
training method
Figure 6.5: MotherNets

train ensemble networks
significantly faster after
having trained the Moth-
erNet (shown in black).

8.5 =100}
D g |k=100es) “‘;5"’ i
IS P
~ 5 k=5)
o 7. f@ (=5 ¢ SE
-~
S 7l ewwo @® MN (g=1)
—
g 65+ @& A MN (g=8)

*=5) @ (k=s0)
O 6 A
N
A A =
8 551 kelog=2s) A =100 |
- (k=50) (k=100)
5

0 5 10 15 20 25 30 35 40 45
training time (hrs)

Figure 6.6: As ensemble
size grows, MotherNets
scale better than SE both

in terms of training time
and accuracy achieved.

20

18 | FGE 77 ,

R 16| VN //
o 14 + %
5 12¢ /
= 10} /
S gl 7
5 Z
o 6t /
74 /
2, % /

0
C10 C100

Figure 6.7: MotherNets

outperform Fast Geomet-
ric Ensembles on Wide
ResNet ensembles trained
on CIFAR data sets.

Figure 6.6 shows results as we increase the number of networks up to a hundred variants
of VGGNets trained on CIFAR-10. For every point in Figure 6.6, k indicates the number
of networks. For MotherNets we plot results for the time-optimized version with g=1,

as well as with g=8.

Figure 6.6 shows that as the size of the ensemble grows, MotherNets scale much better in
terms of training time. Toward the end (for 100 networks), MotherNets train more than
10 hours faster (out of 40 total hours needed for SE). The training time of MotherNets
grows at a much smaller rate because once the MotherNet has been trained, it takes 40

percent less time to train a hatched network than what it takes to train one snapshot.

In addition, Figure 6.6 shows that MotherNets does not only scale better in terms of
training time, but also it scales better in terms of accuracy. As we add more networks to
the ensemble, MotherNets keeps improving its error rate by nearly 2 percent while SE
actually becomes worse by more than 0.5 percent. The declining accuracy of SE as the
size of the ensemble increases has also been observed in the past, where by increasing
the number of snapshots above six results in degradation in performance (i.e., test error
rate) (Huang et al. 2017a).

Finaly, Figure 6.6 shows that different cluster settings for MotherNets allow us to achieve

different performance balances while still providing robust and predictable navigation

114

of the tradeoff. In this case, with g=8 accuracy improves consistently across all points

(compared to g=1) at the cost of extra training time.

6.5.3 PARALLEL TRAINING

Deep learning pipelines rely on clusters of multiple GPUs to train computationally-
intensive neural networks. MotherNets continue to improve training time in such cases

when an ensemble is trained on more than one GPUs. We show this experimentally.

To train an ensemble of multiple networks, we queue all networks that are ready to be
trained and assign them to available GPUs in the following fashion: If the number of
ready networks is greater than free GPUs, then we assign a separate network to every
GPU. If the number of ensemble networks available to be trained are less than the
number of idle GPUs, then we assign one network to multiple GPUs dividing idle GPUs
equally between networks. In such cases, we adopt data parallelism to train a network

across multiple machines (Dean et al. 2012).

We train on a cluster of 8 Nvidia K80 GPUs and vary the number of available GPUs
from 1 to 8. The training hyperparameters are the same as described in Section 3.
Figure 6.8 and Figure 6.9 show the time to train the V5 and D5 ensembles respectively
across FD, SE, and MotherNets. We observe that compared to Snapshot Ensembles,
MotherNets (g=1) scale better as we increase the number of GPUs. The reason for this
is that after the MotherNet has been trained, the rest of the ensemble networks are all
ready to be trained. They can then be trained in a way that minimizes communication
overhead by assigning them to as distinct set of GPUs as possible. Snapshot Ensembles,
on the other hand, are generated one after the other. In a parallel setting this boils
down to training a single network across multiple GPUs, which incurs communication

overhead that increases as the number of GPUs increases (KKeuper and Preundt 2016).

6.5.4 IMPROVING CLOUD TRAINING COST

One approach to speed up training of large ensembles is to utilize more than one ma-

chines. For example, we could train k£ individual networks in parallel using & machines.

115

10000 10000 1000

P VS P V25 SVHN ~J V25 C100
= = 750 | RIOCIO /)
. p— . p— ~ Ml
£ £ 2 |

L L V]
o 1000 ‘ o 1000 B 250 | / 7 ¢
E 3 E - V] v A w7
.g ; 3 R= 2 A0 A o] /]
= g % = o 0
o kBT zi S
= 100 ¢ 3 : SOk = 100 F 5 =
= ; g % = 5 = M2
k= 2| 3 £ £ 150t 7
= GG S s 207 B
B e e B = m T A 5

10 Rl Bl 10 LR S SR R 0 ~
1 2 4 8 1 2 4 8 MN, SE KD BA FD
number of GPUs number of GPUs training method

Figure 6.8: MotherNets Figure 6.9: MotherNets Figure 6.10: MotherNets
continue to improve train- is able to utilize multi- result in dollar amount
ing cost in settings with ple GPUs effectively scal- saving in cloud cost over
multiple GPUs (V5). ing better than SE. other techniques.

While this does save time, the holistic cost in terms of energy and resources spent is

still linear to the ensemble size.

One proxy for capturing the holistic cost is to look at the amount of money one has to
pay on the cloud for training a given ensemble. In our next experiment, we compare all
approaches using this proxy. Figure 6.10 shows the cost (in USD) of training on four
cloud instances across two cloud service providers: (i) M1 that maps to AWS P2.xlarge
and Azure NC6, and (ii) M2 that maps to AWS P3.2xlarge and Azure NCv3. M1 is
priced at USD 0.9 per hour and M2 is priced at USD 3.06 per hour for both cloud

service providers (Amazon 2019; Microsoft 2019).

6.5.5 ANALYZING ENSEMBLE DIVERSITY
Next, we analyze how diverse are MotherNets ensembles compared to SE and FD.

Ensembles and Predictive Diversity. Theoretical results suggest that ensembles
of models perform better when the models’ predictions on a single example are less
correlated. This is true under two assumptions: (i) models have equal correct classifica-
tion probability and (ii) the ensemble uses majority vote for classification (Krogh and

Vedelsby 1994; Rosen 1996; Kuncheva and Whitaker 2003). Under ensemble averag-

116

ing (the method we use to combine ensemble networks’ predictions), no analytical proof
that negative correlation reduces error rate exists, but lower correlation between models

can be used to create a smaller upper bound on incorrect classification probability.

To establish this smaller upper bound, we can analyze how model covariance effects en-
semble performance by using Chebyshev’s Inequality to bound the chance that a model
predicts an example incorrectly. By showing that lower covariance between models
makes this bound on the probability smaller, we give an intuitive reason why ensembles
with lower covariance between models perform better. The proof shows as well that
the average model’s predictive accuracy is important; finally, no assumptions need to
be made for the proof to hold. The individual models can be of different quality and

have different chances of getting each example correct.

Given a fixed training dataset, let Y; be the softmax value of model ¢ in the ensemble
for the correct class, and let Y = % >, Y; be the ensemble’s average softmax value on
the correct class. Both are random variables with the randomness of Y and Y; coming
through the randomness of neural network training. Under the mild assumption that
E[Y] > %, so that the a one vs. all softmax classifier would say on average that
the correct class is more likely, than Chebyshev’s Inequality bounds the probability of
incorrect prediction. Namely, the correct prediction is made with certainty if Y > %

and so the probability of incorrect prediction is less than

A~

PV~ EIV) 2 BIV] -) € it
2

From the form of the equation, we immediately see that keeping the average model
accuracy E[Y;] high is important, and that degradation in model quality can offset
reductions in variance. Since the variance of ¥ decomposes into Lo Var(ys) +
> iz Cov(Y;,Yyr)), we see that low model covariance keeps the variance of the ensemble
low, and that models which have which have high covariance with other models provides
little benefit to the ensemble.

Rapid Ensemble Training Methods. For MotherNets, as well as for all other com-

pared techniques for ensemble training, the training procedure binds the models together

117

Full Data MotherNets Snapshot Ensemble

0.025 0 0 0 0 0.027 0.01 0.009 0.009 0.009 0.034 0.008 0.008 0.007 0.008
0 0025 O 0 0 0.01 0.027 0.009 0.009 0.008 0.008 0.028 0.01 0.009 0.009
0 0 0027 O 0 0.009 0.009 0.028 0.009 0.008 0.008 0.01 0.027 0.01 0.01
0 0 0 0.026 -0.001 0.009 0.009 0.009 0.028 0.008 0.007 0.009 0.01 0.028 0.01

0 0 0 -0.001 0.026 0.009 0.008 0.008 0.008 0.028 0.008 0.009 0.01 0.01 0.027

Figure 6.11: MotherNets (with g=1) train ensembles with lower model covariances
compared to Snapshot Ensembles.

to decrease training time. This can have two negative effects compared to independent

training of models:

1. by changing the model’s architecture or training pattern, the technique affects

each model’s prediction quality (the model’s marginal prediction accuracy suffers)

2. by sharing layers (TN), attempted softmax values (KD), or training epochs (SE,

MN), the training technique creates positive correlations between model errors.

We compare here the magnitude of these two effects forMotherNets and Snapshot En-

sembles when compared to independent training of each model on CIFAR-10 using V5.

Individual Model Quality. For both SE and MN, the individual model accuracy
drops, but the effect is more pronounced in SE than MN. The mean misclassification
percentage of the individual models for V5 using FD, MN and SE are 8.1%, 8.4% and
9.8% respectively. The poor performance of SE in this area is due to its difficulty in
consistently hitting performant local minima, either because it overfits to the training
data when trained for a long time or because its early snapshots need to be far away

from the final optimum to encourage diversity.

Model Variance. Our goal in assessing variance is to see how the training procedure
affects how models in the ensemble correlate with each other on each example. To
do this, we train each of the five models in V5 five times under MN, SE, and FD.

118

g MN []

@ 7@ @ Shared-MN () 1
e S|

. 6 L |
5 9 0
E 2@ MG R
Q O

£ 100 *
.“é: 0 | | |

1 2 3 4 5
number of clusters

Figure 6.12: Shared MotherNets improve inference time by 2x for the V5 ensemble.

Letting Y;; be the softmax of the correct model on test example j using model 7, we
then estimate Var(Y;;) for each i,j and Cov(Yj;, Yy ;) for each 4,7, j with i # ¢’ using
the sample variance and covariance. To get a single number for a model, instead of
one for each test example, we then average across all test examples, i.e. Cov(Y;,Yy) =
%2?21 Cov(Yjj,Yy;). For total variance numbers for the ensemble, we perform the

same procedure on Y; = % Z?Zl Yij.

Figure 6.11 shows the results. As expected, independent training between the models
in FD makes their corresponding covariance 0 and provides the greatest overall variance
reduction for the ensemble, with ensemble variance at 0.0051. For both SE and MN, the
covariance of separate models is non-zero at around 0.009 per pair of models; however,
it is also significantly less than the variance of a single model. As a result, both MN and
SE provide significant variance reduction compared to a single model. Whereas a single
model has variance around 0.026, MN and SE provide ensemble variance of 0.0125 and

0.0130 respectively.

Takeaways. Since both SE and MN train nearly as fast as a single model, they provide
variance reduction in prediction at very little training cost. Additionally, for MN, at the
cost of higher training time, one can create more clusters and thus make the training
of certain models independent of each other, zeroing out many of the covariance terms
and reducing the overall ensemble variance. When compared to each other, MN with

g=1 and SE have similar variance numbers, with MN slightly lower, but MotherNets

119

has a substantial increase in individual model accuracy when compared to Snapshot

Ensembles. As a result, its overall ensemble performs better.

6.5.6 ENABLING FAST ENSEMBLE INFERENCE

Figure 6.12 shows how shared-MotherNets improves inference time for an ensemble of 5
variants of VGGNet as described in Table 1. This ensemble is trained on the CIFAR-10
data set. We report both overall ensemble test error rate and the inference time per
image. We see an improvement of 2x with negligible loss in accuracy. This improve-
ment is because shared-MotherNets has a reduced number of parameters requiring less

computation during inference time. This improvement scales with the ensemble size.

120

Conclusion and Future Work

This thesis presented Computation-Cautious Machine Learning Systems that improve
various stages of the machine learning pipeline. The core intuition is to address the ex-
pensive bottleneck of repeated data movement and computation prevalent in machine
learning pipelines. Computation-Cautious Machine Learning Systems identify opportu-
nities to reuse, demystify, and share computation and data movement at various phases
of machine learning pipelines. By doing so, they significantly speed up data exploration,
improve model design under resource constraints, and establish a new Pareto frontier

for the accuracy-training time tradeoff of deep neural network ensembles.

FUTURE DIRECTIONS

Expanding Scope of Tasks and Models. This thesis explores the application of
Computation-Cautious Machine Learning Systems extensively to image classification
using fully-connected and convolutional neural networks. There are opportunities to
expand both the scope of tasks and models to apply Computation-Cautious Machine

Learning Systems. For instance, we can expand Deep Collider to include (i) hetero-

121

geneous ensembles (e.g., various ratios of width-equivalent and depth-equivalent net-
works), (ii) arbitrary network architectures (including using network architecture search
approaches), and (iii) application domains other than image classification such as object
detection, machine translation, kernel methods, and deep generative models. Similarly,
the paradigm of sharing computation and data movement between different models, as
introduced in MotherNets, can be explored to train ensembles for object localization,
machine translation, and time series prediction. Finally, MotherNets that enables fast
training of a large set of heterogeneous networks can be explored in contexts other
than ensemble learning that train multiple networks. These scenarios include network

architecture search and hyperparameter tuning.

Feature Visualization. In addition to expanding the scope of tasks and models, we
can extend the evaluation of MotherNets and Deep Collider to include visual analysis
of features learned by different layers of the neural network models (Zeiler and Fergus
2014). In the case of MotherNets, this can provide a human-interpretable understanding
of the diversity between the models. In the case of the Deep Collider, this can serve as

yet another metric to understand the relative rank of various designs.

Understanding Model Design for Emerging Hardware. Recently, new hardware
is being developed for deep learning. This hardware ranges from accelerators (such as
Tensor Processing Units (TPU) by Google and Deep Learning Units (DLU) by Fujitsu)
to hardware that uses quantum and photonics paradigms to improve computers’ capa-
bilities to move data and perform computation on it. For instance, photonics-electronics
hybrid computers promise to provide orders of magnitude higher bandwidth between
memory and compute than existing GPUs. Computation-Cautious Machine Learning
Systems study and model various tradeoffs between compute and data movement and
there are opportunities to extendx them to emerging hardware. There are important
challenges of figuring out how to design, train, and deploy models (that are currently
intended for existing hardware) to utilize these new capabilities properly: (i) How does
the relationship between the size of a deep learning model — width, depth, and the num-
ber of parameters — and the resources it requires changes with new hardware? (ii) How
to effectively distribute model training between different compute nodes? And (iii) How

to set training hyperparameters such as batch size, weight decay, and learning rate?

122

Enabling Machine Learning for Low Resource Scenarios. There are challenges of
efficiently applying machine learning to low-resource scenarios, e.g., in the global south
with drastically less compute and memory resources available per capita and unreliable
power and internet connectivity. One direction would be to design systems that coalesce
various operators in a deep learning model to reduce both data access and computation
during training and inference. Another direction is to design systems that can train and
deploy deep learning models in unpredictable environments with frequent power cuts
and variable compute resource availability. Finally, there are opportunities to conduct
large-scale research in characterizing the diversity in training and deployment devices
around the globe and the implications this has for model and hardware design. Deep
Collider, for instance, can help study the holistic design space between models and

hardware design, specifically in low-resource scenarios.

Incorporating Responsibility in Machine Learning Pipelines. When we apply
machine learning pipelines to user-facing applications, then there are new challenges to
consider. For example, when we use deep learning to make decisions that can directly im-
pact humans, it is crucial to understand how deep learning models made these decisions
and why. There are several opportunities for Deep Collider to understand better the
relationship between various model designs and robustness and interpretability (Wasay
et al. 2021). We can expand Deep Collider to include robustness, fairness, and inter-
pretability metrics. In addition to this, there are opportunities for designing systems
that can efficiently track the end-to-end provenance of machine learning pipelines mak-
ing it easier to verify the degree of fairness they exhibit. Here, Computation-Cautious
Machine Learning Systems’ framework to efficiently use data movement and compu-
tation is ever more crucial to maintain interactivity as users debug and understand

deployed pipelines.

Overall, this thesis paves the way for thinking holistically about machine learning
pipelines, where we bring the resources required to run these pipelines — time, memory
usage, cloud cost — to the forefront, along with the quality of the model. As machine
learning pipelines scale to more data, to more applications, and ultimately to more peo-
ple, a holistic approach to these pipelines enables more efficient utilization of resources

while achieving desired outcomes.

123

Bibliography

NumPy. http://www.numpy.org, 2013.
Psycopg. http://initd.org/psycopg/, 2014.

National Centers for Environmental Information (NCEI). https://www.ncei.noaa.
gov, 2016.

Wofram - Descriptive Statistics. https://reference.wolfram.com/language/

tutorial/DescriptiveStatistics.html, 2017.

Azza Abouzied, Joseph M Hellerstein, and Avi Silberschatz. Playful Query Specifi-
cation with DataPlay. Proceedings of the VLDB Endowment, 5(12):1938-1941, 2012.
URL http://v1ldb.org/pvldb/vol5/p1938{_}azzaabouzied{_}v1db2012.pdf.

Jan Adler. Materialized views in distributed key-value stores. PhD thesis, Technical
University of Munich, Germany, 2020. URL https://nbn-resolving.org/urn:nbn:
de:bvb:91-diss-20200714-1546769-1-3.

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. BlinkDB: Queries with Bounded Errors and Bounded Response Times
on Very Large Data. In Proceedings of the ACM Furopean Conference on Computer
Systems (EuroSys), pages 29-42, 2013. ISBN 9781450319942. doi: 10.1145/2465351.
2465355. URL http://dl.acm.org/citation.cfm?id=2465351.2465355.

Dimitris K Agrafiotis, Walter Cedeno, and Victor S Lobanov. On the use of neural
network ensembles in gsar and gspr. Journal of chemical information and computer
sciences, 42(4), 2002.

Rafi Ahmed, Randall G. Bello, Andrew Witkowski, and Praveen Kumar. Automated
generation of materialized views in oracle. Proc. VLDB Endow., 13(12):3046-3058,
2020. doi: 10.14778/3415478.3415533. URL http://www.vldb.org/pvldb/voll3/
p3046-ahmed.pdf.

124

http://www.numpy.org
http://initd.org/psycopg/
https://www.ncei.noaa.gov
https://www.ncei.noaa.gov
https://reference.wolfram.com/language/tutorial/DescriptiveStatistics.html
https://reference.wolfram.com/language/tutorial/DescriptiveStatistics.html
http://vldb.org/pvldb/vol5/p1938%7B_%7Dazzaabouzied%7B_%7Dvldb2012.pdf
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20200714-1546769-1-3
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20200714-1546769-1-3
http://dl.acm.org/citation.cfm?id=2465351.2465355
http://www.vldb.org/pvldb/vol13/p3046-ahmed.pdf
http://www.vldb.org/pvldb/vol13/p3046-ahmed.pdf

Foteini Alvanaki and Sebastian Michel. Tracking set correlations at large scale. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
pages 1507-1518, 2014. doi: 10.1145/2588555.2610510. URL http://doi.acm.org/
10.1145/2588555.2610510.

Amazon. Aws pricing. https://aws.amazon.com/pricing/, 2019. (Accessed on
05/16/2019).

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. CoRR, abs/1802.06509, 2018.

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in

Neural Information Processing Systems, 2014.

Daniel Barbara and Mark Sullivan. Quasi-cubes: Exploiting Approximations in Mul-
tidimensional Databases. ACM SIGMOD Record, 26(3):12-17, 1997. doi: 10.1145/
262762.262764. URL http://doi.acm.org/10.1145/262762.262764.

Leilani Battle, Remco Chang, and Michael Stonebraker. Dynamic Prefetching of Data
Tiles for Interactive Visualization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 1363-1375, 2016. doi: 10.1145/2882903.
2882919. URL http://doi.acm.org/10.1145/2882903.2882919.

Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. Deep learning. Nature, 521,
2015.

Kevin Beyer and Raghu Ramakrishnan. Bottom-up Computation of Sparse and Iceberg
CUBE. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 359-370, 1999. ISBN 1-58113-084-8. doi: 10.1145/304182.304214. URL
http://doi.acm.org/10.1145/304182.304214.

Christopher M Bishop. Pattern recognition. Machine Learning, 128:1-58, 2006.

Matthias Boehm, Arun Kumar, and Jun Yang. Data management in machine learning
systems. Synthesis Lectures on Data Management, 11(1):1-173, 2019.

Hamed R Bonab and Fazli Can. A theoretical framework on the ideal number of
classifiers for online ensembles in data streams. In Proceedings of the 25th ACM In-

ternational on Conference on Information and Knowledge Management, 2016.

125

http://doi.acm.org/10.1145/2588555.2610510
http://doi.acm.org/10.1145/2588555.2610510
https://aws.amazon.com/pricing/
http://doi.acm.org/10.1145/262762.262764
http://doi.acm.org/10.1145/2882903.2882919
http://doi.acm.org/10.1145/304182.304214

Hamed R Bonab and Fazli Can. Less is more: A comprehensive framework for the
number of components of ensemble classifiers. IEEFE Transactions on Neural Networks

and Learning Systems, 2017.

Peter Boncz, Stefan Manegold, and Martin L. Kersten. Database architecture op-
timized for the new bottleneck: Memory access. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 54-65, 1999. URL
http://www.vldb.org/conf/1999/P5.pdf.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. arXiv preprint arXiv:1606.04838, 2016.

M. Brodie, C. Tensmeyer, W. Ackerman, and T. Martinez. Alpha model domination
in multiple choice learning. In IEEFE International Conference on Machine Learning
and Applications (ICMLA), 2018.

Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christopher De
Sa, Christopher R. Aberger, and Kunle Olukotun. Have abstraction and eat per-
formance, too: optimized heterogeneous computing with parallel patterns. In Pro-
ceedings of the 2016 International Symposium on Code Generation and Optimiza-
tion, CGO 2016, Barcelona, Spain, March 12-18, 2016, pages 194-205, 2016. doi:
10.1145/2854038.2854042. URL http://doi.acm.org/10.1145/2854038.2854042.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture
search by network transformation. In AAAI Conference on Artificial Intelligence, 2018.

Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C Platt, James F Terwilliger, and John Wernsing. Trill: A High-

performance Incremental Query Processor for Diverse Analytics. Proceedings of the
VLDB Endowment, 8(4):401-412, 2014. doi: 10.14778/2735496.2735503.

Sirish Chandrasekaran, Mehul A. Shah, Owen Cooper, Amol Deshpande, Michael J.
Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Sammuel R. Mad-
den, and Fred Reiss. TelegraphCQ: continuous dataflow processing. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages 668668,
2003. URL http://dl.acm.org/citation.cfm?id=872757.872857.

126

http://www.vldb.org/conf/1999/P5.pdf
http://doi.acm.org/10.1145/2854038.2854042
http://dl.acm.org/citation.cfm?id=872757.872857

Surajit Chaudhuri and Vivek R Narasayya. AutoAdmin 'What-if’ Index Analysis
Utility. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 367-378, 1998. doi: 10.1145/276304.276337. URL http://doi.acm.
org/10.1145/276304.276337.

Surajit Chaudhuri, Rajeev Motwani, and Vivek R Narasayya. Random Sampling for
Histogram Construction: How much is enough? In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 436-447, 1998. doi: 10.1145/
276304.276343. URL http://doi.acm.org/10.1145/276304.276343.

Surajit Chaudhuri, Gautam Das, and Utkarsh Srivastava. Effective Use of Block-Level
Sampling in Statistics Estimation. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 287-298, 2004. doi: 10.1145/1007568.
1007602. URL http://doi.acm.org/10.1145/1007568.1007602.

Tianqi Chen, Ian J. Goodfellow, and Jonathon Shlens. Net2net: Accelerating learn-
ing via knowledge transfer. In International Conference on Learning Representations
(ICLR), San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

Y Chen, A Rau-Chaplin, F Dehne, T Eavis, D Green, and E Sithirasenan. cgmOLAP:
Efficient Parallel Generation and Querying of Terabyte Size ROLAP Data Cubes. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), page
164, 2006. doi: 10.1109/ICDE.2006.32.

Nadezhda Chirkova, Ekaterina Lobacheva, and Dmitry Vetrov. Deep ensembles on a

fixed memory budget: One wide network or several thinner ones?, 2020.

Rada Chirkova and Jun Yang. Materialized views. Foundations and Trends in
Databases, 4(4):295-405, 2011.

Graham Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-Min Sketch and its Applications. Journal of Algorithms, 55(1):58-75, 2005.

Christopher Culley, Supreeta Vijayakumar, Guido Zampieri, and Claudio Angione.
A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell
growth. Proceedings of the National Academy of Sciences, 117(31):18869-18879, 2020.

127

http://doi.acm.org/10.1145/276304.276337
http://doi.acm.org/10.1145/276304.276337
http://doi.acm.org/10.1145/276304.276343
http://doi.acm.org/10.1145/1007568.1007602

Nilesh N Dalvi and Dan Suciu. Answering Queries from Statistics and Probabilistic
Views. In Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 805-816, 2005. URL http://www.v1db2005.0rg/program/paper/
thu/p805-dalvi.pdf.

Yann N Dauphin and Yoshua Bengio. Big neural networks waste capacity. International
Conference on Learning Representations (ICLR), 2013.

Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational geometry. In Computational geometry, pages 1-17. Springer, 2000.

Christopher De Sa and Matthew Feldman. Understanding and optimizing asyn-

chronous low-precision stochastic gradient descent.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep

networks. In Advances in Neural Information Processing Systems, 2012.

Prasad Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F Naughton.
Caching Multidimensional Queries Using Chunks. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 259-270, 1998. doi: 10.1145/
276304.276328. URL http://doi.acm.org/10.1145/276304.276328

Thomas G Dietterich. Ensemble methods in machine learning. In International Work-
shop on Multiple Classifier Systems, 2000.

Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-by-Example:
An Automatic Query Steering Framework for Interactive Data Exploration. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
pages 517-528, 2014. doi: 10.1145/2588555.2610523. URL http://doi.acm.org/10.
1145/2588555.2610523.

Pedro Domingos. Why does bagging work? a bayesian account and its implications.

In International Conference on Knowledge Discovery and Data Mining (KDD), 1999.

Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou Tang. Compression artifacts
reduction by a deep convolutional network. In IFEFE International Conference on

Computer Vision, 2015.

128

http://www.vldb2005.org/program/paper/thu/p805-dalvi.pdf
http://www.vldb2005.org/program/paper/thu/p805-dalvi.pdf
http://doi.acm.org/10.1145/276304.276328
http://doi.acm.org/10.1145/2588555.2610523
http://doi.acm.org/10.1145/2588555.2610523

Marina Drosou and Evaggelia Pitoura. YmalDB: A Result-Driven Recommendation
System for Databases. In Proceedings of the International Conference on Extending
Database Technology (EDBT), pages 725-728, 2013. doi: 10.1145/2452376.2452464.
URL http://doi.acm.org/10.1145/2452376.2452464.

Harris Drucker, Robert Schapire, and Patrice Simard. Improving performance in neural
networks using a boosting algorithm. In Advances in Neural Information Processing
Systems, 1993.

Li Du, Yuan Du, Yilei Li, Junjie Su, Yen-Cheng Kuan, Chun-Chen Liu, and Mau-
Chung Frank Chang. A reconfigurable streaming deep convolutional neural network

accelerator for internet of things. IEFE Transactions on Clircuits and Systems, 2017.

Curtis E Dyreson. Information Retrieval from an Incomplete Data Cube. In Pro-
ceedings of the International Conference on Very Large Data Bases (VLDB), pages
532-543, 1996. ISBN 1-55860-382-4. URL http://dl.acm.org/citation.cfm?id=
645922.673326.

David Eigen, Jason Rolfe, Rob Fergus, and Yann LeCun. Understanding deep architec-
tures using a recursive convolutional network. International Conference on Learning
Representations (ICLR), 2013.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks.
CoRR, abs/1512.03965, 2015.

Ying Feng, Divyakant Agrawal, Amr El Abbadi, and Ahmed Metwally. Range cube:
efficient cube computation by exploiting data correlation. In Proceedings. 20th Inter-
national Conference on Data Engineering, pages 658-669, 2004. ISBN 0-7695-2065-0.
doi: 10.1109/ICDE.2004.1320035. URL http://ieeexplore.ieee.org/document/
1320035/.

Sloan Foundation. Sloan digital sky survey. URL http://www.sdss.org.

The R Foundation. The R Project for Statistical Computing. https://www.
r-project.org, 2016.

129

http://doi.acm.org/10.1145/2452376.2452464
http://dl.acm.org/citation.cfm?id=645922.673326
http://dl.acm.org/citation.cfm?id=645922.673326
http://ieeexplore.ieee.org/document/1320035/
http://ieeexplore.ieee.org/document/1320035/
http://www.sdss.org
https://www.r-project.org
https://www.r-project.org

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, and An-
drew Gordon Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns.

In Advances in Neural Information Processing Systems, 2018.

Thanaa M Ghanem, Moustafa A Hammad, Mohamed F Mokbel, Walid G Aref, and
Ahmed K Elmagarmid. Incremental Evaluation of Sliding-Window Queries over Data
Streams. I[EFEE Transactions on Knowledge and Data Engineering (TKDE), 19(1):
57-72, 2007. doi: 10.1109/TKDE.2007.250585. URL http://dx.doi.org/10.1109/
TKDE. 2007 .250585.

Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast Incremental Mainte-
nance of Approximate Histograms. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 466-475, 1997. URL http://www.v1ldb.org/
conf/1997/P466 . PDF.

Phillip B Gibbons, Viswanath Poosala, Swarup Acharya, Yair Bartal, Yossi Matias,
S Muthukrishnan, Sridhar Ramaswamy, and Torsten Suel. AQUA: System and Tech-
niques for Approximate Query Answering. Bell Labs - Technical Report, 1998.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Ed-
ward Choi. Morphnet: Fast & simple resource-constrained structure learning of deep
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Anjana Gosain and Kavita Sachdeva. Selection of materialized views using stochastic
ranking based backtracking search optimization algorithm. International journal of

system assurance engineering and management, 10(4):801-810, 2019.

Pablo M Granitto, Pablo F Verdes, and H Alejandro Ceccatto. Neural network en-
sembles: Evaluation of aggregation algorithms. Artificial Intelligence, 163(2), 2005.

Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Mu-
rali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data Cube: A Relational Ag-
gregation Operator Generalizing Group-by, Cross-Tab, and Sub Totals. Data Mining

130

http://dx.doi.org/10.1109/TKDE.2007.250585
http://dx.doi.org/10.1109/TKDE.2007.250585
http://www.vldb.org/conf/1997/P466.PDF
http://www.vldb.org/conf/1997/P466.PDF

and Knowledge Discovery, 1(1):29-53, 1997. doi: 10.1023/A:1009726021843. URL
http://dx.doi.org/10.1023/A:1009726021843.

Timothy Griffin and Leonid Libkin. Incremental Maintenance of Views with Du-
plicates. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 328-339, 1995. doi: 10.1145/223784.223849. URL http:
//doi.acm.org/10.1145/223784.223849.

Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunacha-
lam Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge
Cuadros, et al. Development and validation of a deep learning algorithm for detection

of diabetic retinopathy in retinal fundus photographs. Jama, 316(22), 2016.

Philip Jia Guo. Software Tools to Facilitate Research Programming. PhD thesis, Stan-
ford University, 2012. URL https://searchworks.stanford.edu/view/9625286.

Suyog Gupta, Wei Zhang, and Fei Wang. Model accuracy and runtime tradeoff in
distributed deep learning: A systematic study. In IEEE International Conference on
Data Mining (ICDM), 2016.

Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learning:
Learning to produce multiple structured outputs. In Advances in Neural Information

Processing Systems, 2012.

Abner Guzman-Rivera, Pushmeet Kohli, Dhruv Batra, and Rob Rutenbar. Efficiently
enforcing diversity in multi-output structured prediction. In Artificial Intelligence and
Statistics, 2014.

Alon Y Halevy. Structures, Semantics and Statistics. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 4-6, 2004. URL
http://www.vldb.org/conf/2004/KEY2.PDF.

Pat Hanrahan. VizQL: A Language for Query, Analysis and Visualization. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
page 721, 2006. doi: 10.1145/1142473.1142560. URL http://doi.acm.org/10.1145/
1142473.1142560.

131

http://dx.doi.org/10.1023/A:1009726021843
http://doi.acm.org/10.1145/223784.223849
http://doi.acm.org/10.1145/223784.223849
https://searchworks.stanford.edu/view/9625286
http://www.vldb.org/conf/2004/KEY2.PDF
http://doi.acm.org/10.1145/1142473.1142560
http://doi.acm.org/10.1145/1142473.1142560

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Joseph M Hellerstein and Jeffrey F Naughton. Query Execution Techniques for Caching
Expensive Methods. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 423-434, 1996. doi: 10.1145/233269.233359. URL
http://doi.acm.org/10.1145/233269.233359.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop, 2015.

Bill Howe, Francois Ribalet, Daniel Halperin, Sagar Chitnis, and E Virginia Armbrust.

Sqlshare: Scientific workflow via relational view sharing.

Botong Huang, Shivnath Babu, and Jun Yang. Cumulon: Optimizing Statistical Data
Analysis in the Cloud. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 1-12, 2013. doi: 10.1145/2463676.2465273. URL
http://doi.acm.org/10.1145/2463676.2465273.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep

networks with stochastic depth. In European Conference on Computer Vision, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q
Weinberger. Snapshot ensembles: Train 1, get m for free. 5th International Conference
on Learning Representations (ICLR), 2017a.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In IEEE Conference on Computer Vision and Pat-
tern Recognition, (CVPR), 2017b.

Thomas Huang. Computer vision: Evolution and promise. 1996.

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable
bayesian logistic regression. In Advances in Neural Information Processing Systems,
2016.

132

http://doi.acm.org/10.1145/233269.233359
http://doi.acm.org/10.1145/2463676.2465273

Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. Firecaffe:
Near-linear acceleration of deep neural network training on compute clusters. In IEEE

Conference on Computer Vision and Pattern Recognition, 2016.
Stratos Idreos. Big Data Exploration. Taylor and Francis, 2013.

Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of Data Ex-
ploration Techniques. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, Tutorial, pages 277-281, 2015. URL http://dl.acm.org/
citation.cfm?id=2723372.2731084.

Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhi-
menko. Gist: Efficient data encoding for deep neural network training. In IEEE

Annual International Symposium on Computer Architecture, 2018.

Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed Lazowska. SQL-
Share: Results from a Multi-Year SQL-as-a-Service Experiment. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages 281-293,
2016. doi: 10.1145/2882903.2882957. URL http://doi.acm.org/10.1145/2882903.
2882957.

Cheng Ju, Aurélien Bibaut, and Mark J van der Laan. The relative performance of

ensemble methods with deep convolutional neural networks for image classification.
CoRR, abs/1704.01664, 2017.

Minsuk Kahng, Dezhi Fang, and Duen Horng (Polo) Chau. Visual Exploration of
Machine Learning Results Using Data Cube Analysis. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics (HILDA), pages 1:1—1:6, 2016. ISBN 978-
1-4503-4207-0. doi: 10.1145/2939502.2939503. URL http://doi.acm.org/10.1145/
2939502.2939503.

Yashal Shakti Kanungo, Bhargav Srinivasan, and Savita Choudhary. Detecting dia-
betic retinopathy using deep learning. In 2017 2nd IEEE International Conference on
Recent Trends in FElectronics, Information & Communication Technology (RTEICT),
pages 801-804. TEEE, 2017.

133

http://dl.acm.org/citation.cfm?id=2723372.2731084
http://dl.acm.org/citation.cfm?id=2723372.2731084
http://doi.acm.org/10.1145/2882903.2882957
http://doi.acm.org/10.1145/2882903.2882957
http://doi.acm.org/10.1145/2939502.2939503
http://doi.acm.org/10.1145/2939502.2939503

Arthur M Keller and Julie Basu. A Predicate-based Caching Scheme for Client-
Server Database Architectures. The VLDB Journal, 5(1):35-47, 1996. doi: 10.1007/
s007780050014. URL http://dx.doi.org/10.1007/s007780050014.

Janis Keuper and Franz-Josef Preundt. Distributed training of deep neural networks:
Theoretical and practical limits of parallel scalability. In 2016 2nd Workshop on Ma-
chine Learning in HPC Environments (MLHPC), pages 19-26. IEEE, 2016.

Alicia Key, Bill Howe, Daniel Perry, and Cecilia R Aragon. VizDeck: self-organizing
dashboards for visual analytics. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 681-684, 2012. doi: 10.1145/2213836.
2213931. URL http://doi.acm.org/10.1145/2213836.2213931.

Yoon Kim. Convolutional neural networks for sentence classification. Empirical Meth-

ods in Natural Language Processing, 2014.

Dan Kondratyuk, Mingxing Tan, Matthew Brown, and Boqing Gong. When ensem-

bling smaller models is more efficient than single large models, 2020.
Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation and ac-
tive learning. In International Conference on Neural Information Processing Systems,
1994.

Amit Kumar and TV Vijay Kumar. Materialized view selection using set based par-
ticle swarm optimization. International Journal of Cognitive Informatics and Natural
Intelligence (IJCINI), 12(3):18-39, 2018.

Ludmila I. Kuncheva and Christopher J. Whitaker. Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy. Machine Learning, 51
(2), 2003.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553),
2015.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv
Batra. Why M heads are better than one: Training a diverse ensemble of deep networks.
CoRR, abs/1511.06314, 2015a.

134

http://dx.doi.org/10.1007/s007780050014
http://doi.acm.org/10.1145/2213836.2213931

Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv
Batra. Why M heads are better than one: Training a diverse ensemble of deep networks.
CoRR, abs/1511.06314, 2015b.

Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ranjan,
David Crandall, and Dhruv Batra. Stochastic multiple choice learning for training

diverse deep ensembles. In Advances in Neural Information Processing Systems, 2016.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. 1966.

Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F Naughton,
and Jignesh M Patel. Tuple-oriented compression for large-scale mini-batch stochastic
gradient descent. In Proceedings of the 2019 International Conference on Management
of Data, pages 1517-1534, 2019a.

Side Li, Lingjiao Chen, and Arun Kumar. Enabling and optimizing non-linear fea-
ture interactions in factorized linear algebra. In Proceedings of the 2019 International
Conference on Management of Data, pages 1571-1588, 2019b.

Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, and Yizhou Sun. Sampling Cube:
A Framework for Statistical OLAP over Sampling Data. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 779-790, 2008.
ISBN 978-1-60558-102-6. doi: 10.1145/1376616.1376695. URL http://doi.acm.org/
10.1145/1376616.1376695.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IFEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

Erietta Liarou and Stratos Idreos. dbTouch in action database kernels for touch-
based data exploration. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 1262-1265, 2014. doi: 10.1109/ICDE.2014.6816756. URL
http://dx.doi.org/10.1109/ICDE.2014.6816756.

Erietta Liarou, Stratos Idreos, Stefan Manegold, and Martin Kersten. Enhanced
stream processing in a DBMS kernel. In Proceedings of the International Con-
ference on Extending Database Technology (EDBT), pages 501-512, 2013. ISBN

135

http://doi.acm.org/10.1145/1376616.1376695
http://doi.acm.org/10.1145/1376616.1376695
http://dx.doi.org/10.1109/ICDE.2014.6816756

9781450315975. doi: 10.1145/2452376.2452435. URL http://dl.acm.org/citation.
cfm?id=2452376.2452435.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
Matti Pietikainen. Deep learning for generic object detection: A survey. International
journal of computer vision, 128(2):261-318, 2020.

Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time Visual Querying of
Big Data. Computer Graphics Forum, 32(3):421-430, 2013. doi: 10.1111/cgf.12129.
URL http://dx.doi.org/10.1111/cgf .12129.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. In Advances in Neural Information

Processing Systems. 2017.

J. MacQueen. Some methods for classification and analysis of multivariate observa-

tions. In Berkeley Symposium on Mathematical Statistics and Probability, 1967.

David Madigan and Ron Wasserstein. Statistics and science. London Workshop on the
Future of the Statistical Sciences, 2013.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115-133, 1943.

Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. Learning functions: when is
deep better than shallow. CoRR, abs/1603.00988, 2016.

Microsoft. Pricing - windows virtual machines — microsoft azure. https://azure.
microsoft.com/en-us/pricing/details/virtual-machines/windows/, 2019. (Ac-
cessed on 05/16/2019).

Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr., Partha P. Talukdar,
Bo Yang, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matt Gardner,
Bryan Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed,
Ndapandula Nakashole, Emmanouil A. Platanios, Alan Ritter, Mehdi Samadi, Burr
Settles, Richard C. Wang, Derry Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair
Saparov, Malcolm Greaves, and Joel Welling. Never-ending learning. volume 61,
2018.

136

http://dl.acm.org/citation.cfm?id=2452376.2452435
http://dl.acm.org/citation.cfm?id=2452376.2452435
http://dx.doi.org/10.1111/cgf.12129
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/windows/

Erick Moen, Dylan Bannon, Takamasa Kudo, William Graf, Markus Covert, and David
Van Valen. Deep learning for cellular image analysis. Nature methods, 16(12):1233—
1246, 2019.

Guido Moerkotte. Small Materialized Aggregates: A Light Weight Index Structure
for Data Warehousing. In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 476-487, 1998. URL http://dl.acm.org/citation.cfm?
1id=645924.671173.

Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive
time-series data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 171-182, 2010. doi: 10.1145/1807167.1807188. URL
http://doi.acm.org/10.1145/1807167.1807188.

Hannes Miihleisen and Thomas Lumley. Best of Both Worlds: Relational Databases
and Statistics. In Proceedings of the International Conference on Scientific and Statis-
tical Database Management (SSDBM), pages 32:1—-32:4, 2013. doi: 10.1145/2484838.
2484869. URL http://doi.acm.org/10.1145/2484838.2484869.

Inderpal Singh Mumick, Dallan Quass, and Barinderpal Singh Mumick. Maintenance
of Data Cubes and Summary Tables in a Warehouse. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 100-111, 1997.
ISBN 0-89791-911-4. doi: 10.1145/253260.253277. URL http://doi.acm.org/10.
1145/253260.253277.

Arnab Nandi. Querying Without Keyboards. In Proceedings of the Biennial Conference
on Innovative Data Systems Research (CIDR), 2013. URL http://www.cidrdb.org/
cidr2013/Papers/CIDR13{_}Paper37.pdf.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning.

Thong Q Nguyen, Daniel Weitekamp, Dustin Anderson, Roberto Castello, Olmo Cerri,
Maurizio Pierini, Maria Spiropulu, and Jean-Roch Vlimant. Topology classification
with deep learning to improve real-time event selection at the lhc. Computing and
Software for Big Science, 3(1):1-14, 2019.

137

http://dl.acm.org/citation.cfm?id=645924.671173
http://dl.acm.org/citation.cfm?id=645924.671173
http://doi.acm.org/10.1145/1807167.1807188
http://doi.acm.org/10.1145/2484838.2484869
http://doi.acm.org/10.1145/253260.253277
http://doi.acm.org/10.1145/253260.253277
http://www.cidrdb.org/cidr2013/Papers/CIDR13%7B_%7DPaper37.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13%7B_%7DPaper37.pdf

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional

neural networks for graphs. In International conference on machine learning, 2016.

Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent. CoRR, abs/1106.5730,
2011. URL http://arxiv.org/abs/1106.5730.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Sensitivity and generalization in neural networks: an empirical study.

International Conference on Learning Representations (ICLR), 2018.

Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. How
many trees in a random forest? In International Workshop on Machine Learning and

Data Mining in Pattern Recognition. Springer, 2012.

Peter Pirolli and Stuart Card. The sensemaking process and leverage points for analyst

technology as identified through cognitive task analysis. pages 2-4, 2005.

Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christo-
pher De Sa, Christos Kozyrakis, and Kunle Olukotun. Generating configurable
hardware from parallel patterns. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016, pages 651-665, 2016. doi:
10.1145/2872362.2872415. URL http://doi.acm.org/10.1145/2872362.2872415.

Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection for ma-
chine learning: a big data-ai integration perspective. IEEE Transactions on Knowledge

and Data Engineering, 2019.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Con-

ference on Learning Representations (ICLR), 2015.

Bruce E. Rosen. Ensemble learning using decorrelated neural networks. Connection
Science, 1996.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

138

http://arxiv.org/abs/1106.5730
http://doi.acm.org/10.1145/2872362.2872415

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision, 115
(3), 2015.

Sunita Sarawagi and Gayatri Sathe. 13: Intelligent, Interactive Investigation of
OLAP Data Cubes. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 589—-, 2000. ISBN 1-58113-217-4. doi:
10.1145/342009.336564. URL http://doi.acm.org/10.1145/342009.336564.

Saket Sathe and Karl Aberer. AFFINITY: Efficiently Querying Statistical Measures
on Time-Series Data. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), pages 841-852, 2013. doi: 10.1109/ICDE.2013.6544879. URL
http://dx.doi.org/10.1109/ICDE.2013.6544879.

James B. Saxe and Jon Louis Bentley. Transforming Static Data Structures to Dy-
namic Structures. In Proceedings of the Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 148-168, 1979.

Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning linear regression mod-
els over factorized joins. In Proceedings of the International Conference on Management
of Data (SIGMOD), New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3531-7. doi:
10.1145/2882903.2882939. URL http://doi.acm.org/10.1145/2882903.2882939.

SciDB. SciDB-Py. hitp://scidb-py.readthedocs.io/en/stable/, 2016.

Christopher J Shallue and Andrew Vanderburg. Identifying exoplanets with deep
learning: A five-planet resonant chain around kepler-80 and an eighth planet around
kepler-90. The Astronomical Journal, 155(2):94, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Ge-
offrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer. International Conference on Learning Representations

(ICLR), 2017.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep searning in medical image

analysis. Annual review of biomedical engineering, 19, 2017.

139

http://doi.acm.org/10.1145/342009.336564
http://dx.doi.org/10.1109/ICDE.2013.6544879
http://doi.acm.org/10.1145/2882903.2882939

Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev Novik.
Discovering Queries Based on Example Tuples. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 493-504, 2014. doi: 10.1145/
2588555.2593664. URL http://doi.acm.org/10.1145/2588555.2593664.

Lefteris Sidirourgos, Martin L. Kersten, and Peter A Boncz. SciBORQ: Scientific data
management with Bounds On Runtime and Quality. In Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR), pages 296-301, 2011. URL
http://www.cidrdb.org/cidr2011/Papers/CIDR11{_}Paper39.pdf.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations
(ICLR), 2015.

Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble of

deep architectures. In Advances in Neural Information Processing Systems, 2016.

Mohammad Karim Sohrabi and Hossein Azgomi. Evolutionary game theory approach
to materialized view selection in data warehouses. Knowledge-Based Systems, 163:
558-571, 2019.

Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, and
Benjamin Recht. Keystoneml: Optimizing pipelines for large-scale advanced analytics.
In IEEE International Conference on Data Engineering (ICDE), 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1), 2014.

Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A System for Query, Analysis,
and Visualization of Multidimensional Relational Databases. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 8(1):52-65, 2002. doi: 10.1109/2945.
981851. URL http://doi.ieeecomputersociety.org/10.1109/2945.981851.

Michael Stonebraker and Joseph Kalash. TIMBER: A Sophisticated Relation Browser
(Invited Paper). In Proceedings of the International Conference on Very Large Data
Bases (VLDB), pages 1-10, 1982. URL http://www.v1ldb.org/conf/1982/P001.PDF.

140

http://doi.acm.org/10.1145/2588555.2593664
http://www.cidrdb.org/cidr2011/Papers/CIDR11%7B_%7DPaper39.pdf
http://doi.ieeecomputersociety.org/10.1109/2945.981851
http://www.vldb.org/conf/1982/P001.PDF

Chaudhuri Surajit. Data Exploration Challenges in the Age of Big Data. In Proceedings
of the International Workshop on Business Intelligence for the Real-Time Enterprise
(BIRTE), 2016. URL http://db.cs.pitt.edu/birte2016/keynote.html.

Vivienne Sze, Yu-Hsin Chen, Joel S. Einer, Amr Suleiman, and Zhengdong Zhang.
Hardware for machine learning: Challenges and opportunities. In IEEE Custom Inte-
grated Clircuits Conference (CICC), 2017a.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):
2295-2329, 2017b.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Computer Vision and Pattern Recognition (CVPR), 2015.

Matus Telgarsky. Benefits of depth in neural networks. Conference on Learning Theory
(COLT, 2016.

Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie
Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Philipose, and Matt Richard-
son. Do deep convolutional nets really need to be deep and convolutional? Interna-

tional Conference on Learning Representations (ICLR), 2016.

Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. Super learner. Statistical

applications in genetics and molecular biology, 6(1), 2007.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In International Conference on Machine Learning,

2013.

Yu Wang, Gu-Yeon Wei, and David Brooks. A systematic methodology for analysis of

deep learning hardware and software platforms. 2020.

Abdul Wasay and Stratos Idreos. More or less: When and how to build neural network
ensembles. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2021. URL https://openreview.net/forum?id=z52023VBmDZ. under

review.

141

http://db.cs.pitt.edu/birte2016/keynote.html
https://openreview.net/forum?id=z5Z023VBmDZ

Abdul Wasay, Manos Athanassoulis, and Stratos Idreos. Queriosity: Automated Data
Exploration. In Proceedings of the IEEE International Congress on Big Data, pages
716-719, 2015. doi: 10.1109/BigDataCongress.2015.116. URL http://dx.doi.org/
10.1109/BigDataCongress.2015.116.

Abdul Wasay, Manos Athanassoulis, and Stratos Idreos. Queriosity: Automated data
exploration. In Proceedings of IEEE International Congress on Big Data, 2015.

Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. Data canopy: Accelerating
exploratory statistical analysis. In Proceedings of ACM International Conference on
Management of Data (SIGMOD), 2017.

Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos. Moth-
ernets: Rapid deep ensemble learning. In Proceedings of the Conference on Machine
Learning and Systems (MLSys), 2020.

Abdul Wasay, Subarna Chatterjee, and Stratos Idreos. Deep learning: Systems and
responsibility. In Proceedings of ACM International Conference on Management of
Data (SIGMOD), 2021.

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In

International Conference on Machine Learning, 2016.

Tao Wei, Changhu Wang, and Chang Wen Chen. Modularized morphing of neural
networks. CoRR, abs/1701.03281, 2017.

Charles Weill, Javier Gonzalvo, Vitaly Kuznetsov, Scott Yang, Scott Yak, Hanna
Mazzawi, Eugen Hotaj, Ghassen Jerfel, Vladimir Macko, Ben Adlam, Mehryar Mohri,
and Corinna Cortes. Adanet: A scalable and flexible framework for automatically
learning ensembles. CoRR, abs/1905.00080, 2019.

Bernard Widrow et al. Adaptive” adaline” Neuron Using Chemical” memistors.”.
1960.

M. L. Williams, K. M. Fischer, J. T. Freymueller, B. Tipoff, and A. M. TrA@hu.
An earthscope science plan 2010-2020, feb 2010. URL http://www.earthscope.org/
assets/uploads/pages/es_sci_plan.pdf.

142

http://dx.doi.org/10.1109/BigDataCongress.2015.116
http://dx.doi.org/10.1109/BigDataCongress.2015.116
http://www.earthscope.org/assets/uploads/pages/es_sci_plan.pdf
http://www.earthscope.org/assets/uploads/pages/es_sci_plan.pdf

Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning
at facebook: Understanding inference at the edge. In 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 331-344. IEEE,
2019.

Fugene Wu, Leilani Battle, and Samuel R. Madden. The case for data visualization
management systems. Proceedings of the VLDB Endowment, 7(10):903-906, 2014.
ISSN 2150-8097. URL http://dl.acm.org/citation.cfm?id=2732951.2732964.

Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. Continuous Sampling for Online Aggrega-
tion Over Multiple Queries. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 651662, 2010. doi: 10.1145/1807167.1807238.
URL http://doi.acm.org/10.1145/1807167.1807238.

Tianyi Wu, Dong Xin, and Jiawei Han. ARCube: Supporting Ranking Aggregate
Queries in Partially Materialized Data Cubes. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 79-92, 2008. doi: 10.1145/
1376616.1376627. URL http://doi.acm.org/10.1145/1376616.1376627.

X Xie, X Hao, T B Pedersen, P Jin, and J Chen. OLAP Over Probabilistic Data Cubes
I: Aggregating, Materializing, and Querying. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages 799-810, 2016. doi: 10.1109/ICDE.
2016.7498291.

Dong Xin, Jiawei Han, Xiaolei Li, and Benjamin W Wah. Star-cubing: Computing
Iceberg Cubes by Top-down and Bottom-up Integration. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 476-487, 2003. ISBN
0-12-722442-4. URL http://dl.acm.org/citation.cfm?id=1315451.1315493.

Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural network for

image deconvolution. In Advances in Neural Information Processing Systems, 2014.

Meng Ye and Yuhong Guo. Self-training ensemble networks for zero-shot image recog-
nition. Knowl.-Based Syst., 123:41-60, 2017.

143

http://dl.acm.org/citation.cfm?id=2732951.2732964
http://doi.acm.org/10.1145/1807167.1807238
http://doi.acm.org/10.1145/1376616.1376627
http://dl.acm.org/citation.cfm?id=1315451.1315493

Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword Search in Relational Databases:
A Survey. IEEE Data Engineering Bulletin, 33(1):67-78, 2010. URL http://sites.
computer.org/debull/Al10mar/yu-paper.pdf.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. Proceedings of the
British Machine Vision Conference, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-

works. In Furopean conference on computer vision, pages 818-833. Springer, 2014.

Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, and Ste-
fano Ermon. Bias and generalization in deep generative models: An empirical study.

In Advances in Neural Information Processing Systems, 2018.

Yihong Zhao, Prasad Deshpande, and Jeffrey F Naughton. An Array-Based Algorithm
for Simultaneous Multidimensional Aggregates. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 159-170, 1997. doi: 10.1145/
253260.253288. URL http://doi.acm.org/10.1145/253260.253288.

Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed segment
tree: Support of range query and cover query over DHT. In International workshop on
Peer-To-Peer Systems, IPTPS 2006, Santa Barbara, CA, USA, February 27-28, 2006.

Yunyue Zhu and Dennis Shasha. StatStream: Statistical Monitoring of Thousands of
Data Streams in Real Time. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 358-369, 2002. URL http://www.vldb.org/conf/
2002/S10P04 . pdf.

Jia Zou. Using deep learning models to replace large materialized views in relational
database. In 11th Conference on Innovative Data Systems Research, CIDR 2021,
Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org, 2021. URL
http://cidrdb.org/cidr2021/papers/cidr2021_abstract05.pdf.

144

http://sites.computer.org/debull/A10mar/yu-paper.pdf
http://sites.computer.org/debull/A10mar/yu-paper.pdf
http://doi.acm.org/10.1145/253260.253288
http://www.vldb.org/conf/2002/S10P04.pdf
http://www.vldb.org/conf/2002/S10P04.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_abstract05.pdf

1.1

1.2

2.1

2.2

2.3

24

2.5

4.1

4.2

4.3

4.4

4.5

List of Figures

In exploratory statistical analysis, queries request for a given statistic on
a given data range and show various forms of repetition.
We design computation-cautious machine learning systems that address
the bottleneck of repeated computation and data movement across all

stages of machine learning pipelines.

Neural networks are made up of layers of neurons, each neuron takes as
input a subset of neurons from the previous layer and applies a set of
weights to them. L oo
The CIFAR-10 dataset consists of images of everyday object. Each image
is of size 32 x 32 pixels and has one of ten labels attached to it.

Convolutional neural networks are made up of various types of layers,
each designed to serve a specific function. L.
The VGGNet architecture is composed of a sequence of convolutional,
ReLU, and pooling layers. The input image is successively transformed
into a smaller more semantically meaningful form.
Function preserving transformations can be used to increase the depth

and width of a given network, while preserving its function.

An example of queries that can reuse computation and data access
through Data Canopy.
Example of the Data Canopy data structure with two segment trees (ST)
and a chunk size of three. oL
Data Canopy decomposes Statistics into basic aggregates to enable var-
ious forms of reuse.
For each query, Data Canopy traverses the optimal depth d, of the seg-
ment trees.o L. oL Lo e

The lifecycle of a statistical query in Data Canopy.

145

16

19

23

24

30

49

54

54

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

4.16

4.17

4.18

4.19

4.20

4.21
4.22

As the number of rows in the data set increases, a greater proportion of
the total queries is answered through basic aggregates.
Query cost, a convex function of the chunk size, is minimized at the
optimal chunk size s,. Here #=64B, b=5, and k=2, s, = 220B.

Data Canopy adaptively handles new data (rows).
Data Canopy, in online mode, out performs state-of-the-art systems

across a variety of workloads for exploratory statistical analysis by being

able to incrementally improve its performance and minimize data access.

Online and offline Data Canopy result in one and two orders of magnitude
improvement respectively. Lo
Data Canopy accelerates core machine learning classification and filtering
algorithms.
Data Canopy scales almost linearly with the number of rows in the data
set for all workloads.o
Data Canopy scales with the number of columns resulting in sub-linear
increase in query execution time. Lo
The construction of Data Canopy scales linearly with the cores.

As we increase the number of queries, the query response time continu-
ously goes down (up to 190X).
Data Canopy gracefully handles memory pressure, keeping query pro-
cessing time within an interactive range.
In memory-constrained settings, Data Canopy provides 4x performance
improvement over Statsys. oL
Under memory pressure, Data Canopy can vary its chunk size between
the memory-optimized and disk-optimized size.
Data Canopy can support tens of thousands of bivariate statistics. . . .
Data Canopy gracefully handles new data.
Updates in Data Canopy result in negligible overhead.

Data Canopy’s query performance is a convex function of its chunk size.

146

59

59

66

70

70

70

74

74
74

74

76

76

78

78

79

79
80

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

We explore a design space consisting of three design classes: (a) Single
convolutional network models, (b) Depth-equivalent ensembles, and (c)
Width-equivalent ensembles. The two ensemble design classes are cre-
ated by distributing either the width factor or the depth corresponding
to the single network amongst the ensemble networks while keeping the
other factor fixed.
The Ensemble Switchover Threshold (EST) occurs consistently across
various network architectures and data sets. Beyond this resource thresh-
old, ensemble designs outperform single network models.
Ensembles arrive at lower test error rates than single network models
after the EST has been reached.
The Ensemble Switchover Threshold moves to the right as we increase
the number of networks in the ensemble.
The Ensemble Switchover Threshold moves to the right as we increase
the number of networks in the ensemble. Here, we demonstrate this
phenomenon for ResNet models.
As we increase the size of ensembles, accuracy of individual networks in
the ensemble decreases. This results in an overall reduction in ensemble
accuracy shifting the EST to the high-resource space.
When ensemble designs can provide better accuracy, they can also do
so faster than single network models (missing bars indicate that designs
cannot reach single network model accuracy).
Depth-equivalent ensembles take longer to train per epoch as compared
to single network models. Width-equivalent ensembles, on the other
hand, take comparable time.
We break down per epoch training time into: (i) time spent per layer
and (ii) total number of layers. We observe that the total number of
layers in the model more significantly determines the per epoch training
time as compared to the width. The ensemble size is 4 across all these
experiments.o e
Width-equivalent ensembles take comparable time to single network mod-

els for inference. Depth-equivalent ensembles take significantly longer. .

Both classes of ensemble models are significantly more memory efficient.

147

83

86

87

89

90

90

92

93

94

95
97

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

MotherNets train an ensemble of neural networks by first training a set
of MotherNets and transferring the function to the ensemble networks.
The ensemble networks are then further trained converging significantly
faster than training individually.
Constructing MotherNet for convolutional neural networks block-by-
block. For each layer, we select the layer with the least number of param-
eters from the ensemble networks (shown in bold rectangles) (Notation:
<filter_width> : <filter number>).
To construct a shared-MotherNet, parameters originating from the Moth-
erNet are combined together in the ensemble.
MotherNets provide consistently better accuracy-training time tradeoff
when compared with existing fast ensemble training approaches across
various data sets, architectures, and ensemble sizes.
MotherNets train ensemble networks significantly faster after having
trained the MotherNet (shown in black).
As ensemble size grows, MotherNets scale better than SE both in terms
of training time and accuracy achieved.
MotherNets outperform Fast Geometric Ensembles on Wide ResNet en-
sembles trained on CIFAR datasets..
MotherNets continue to improve training cost in settings with multiple
GPUs (VB). . o o
MotherNets is able to utilize multiple GPUs effectively scaling better
than SE. o
MotherNets result in dollar amount saving in cloud cost over other tech-
NIQUES. .« « v v o o e e e e e e e e
MotherNets (with g=1) train ensembles with lower model covariances
compared to Snapshot Ensembles.

Shared MotherNets improve inference time by 2x for the V5 ensemble.

148

99

101

107

111

114

114

114

116

116

116

118
119

	Introduction
	The Machine Learning Era
	Machine Learning Happens in Pipelines
	Bottleneck: Repeated Computation and Data Movement
	Computation-Cautious Machine Learning Systems
	Thesis Outline (How to Read)

	Background
	Data Exploration and Statistics
	Deep Learning
	Deep Learning and Classification
	Convolutional Neural Networks
	Deep Neural Network Ensembles
	Transferring Knowledge between Neural Network Models

	Related Work
	Efficient Data Exploration
	Understanding Deep Learning Model Design
	Efficient Deep Learning
	Fast Ensemble Training and Deployment

	Data Canopy: Accelerating Exploratory Data Analysis
	Example: Query Processing in Data Canopy
	Design Concepts
	Data Structure
	Operation Modes
	Query Processing
	Selecting the Chunk Size
	Memory Footprint
	Out-of-Memory Processing
	Handling Updates
	Experimental Analysis

	Deep Collider: Enabling Better Neural Network Design
	Framework: Design Space
	Framework: Data, Architectures, and Metrics
	Guideline: Ensembles Outperform Single Network Models After a Low to Moderate Parameter Threshold
	Guideline: Ensembles Train Faster and Provide Similar Inference Time
	Guideline: Ensembles are Memory Efficient

	MotherNets: Rapid Deep Ensemble Learning
	Constructing MotherNets
	Training MotherNets
	Navigating Accuracy-Training time Tradeoff
	Shared-MotherNets: Enabling Fast Ensemble Inference
	Experimental Analysis

	Conclusion and Future Work
	References

