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Abstract

Deriving knowledge from data is central to how we live, learn, and decide: Machine

learning and data science pipelines are extensively applied to extract knowledge from an

ever-increasing amount of data across all fields including high-energy physics, astronomy,

and genetics. These pipelines consist of multiple stages from data exploration to model

design, training, and deployment. Di↵erent stages have their own set of algorithms and

techniques, yet they share a common challenge – they involve repeated computation

on huge data sets. This bottleneck slows down machine learning pipelines, which is

problematic not only for latency-sensitive applications (such as self-driving cars and

medical diagnosis), but as a result of this bottleneck, only a fraction of the generated

data can be processed leading to lower quality models, fewer decisions per time unit,

and overall, limited applicability of machine learning.

We introduce Computation-Cautious Machine Learning Systems – Data Canopy, Deep

Collider, and MotherNets – that address the bottleneck of repeated computation and

data movement across four critical stages of machine learning pipelines: (i) data explo-

ration, (ii) model design, (iii) model training, and (iv) model deployment. During data

exploration, Data Canopy enables reuse of computation and data movement across dif-

ferent statistical queries leading to several orders of magnitude (10⇥ to 100⇥) improve-

ment in the speed of data exploration and machine learning algorithms. Deep Collider

reconsiders conventional model design wisdom and enables drastically better model de-

sign by balancing simultaneously accuracy, training time, deployment time, and memory

resources. Finally, MotherNets enables fast and accurate training and deployment of

ensembles of deep neural networks (2 to 3 percent reduced absolute test error rate and

up to 35 percent faster training as compared to state-of-the-art approaches). Mother-

Nets also establishes a new and navigable Pareto frontier for the accuracy-training cost

tradeo↵ of deep neural network ensembles.
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1
Introduction

1.1 The Machine Learning Era

Machine learning enables computers to perform tasks by learning from experience –

i.e., data – instead of executing explicit programs. Over the past two decades, the

ease of collecting and storing data coupled with the introduction of highly-specialized

machine learning algorithms has enabled computers to e�ciently and accurately perform

many complicated tasks. Computers can now classify images at human accuracy, infer

meaning from natural language, and help drive cars (Bengio et al. 2015). The future

holds even more significant promise for machine learning with the increasing adoption

of various machine learning methods in medicine, science, and society.

1.2 Machine Learning Happens in Pipelines

To perform any machine learning task, no matter how simple or complex, machine

learning practitioners and data scientists assemble pipelines, which are made up of

multiple stages (Sparks et al. 2017; Boehm et al. 2019): (i) Data exploration, (ii) Model
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design, (iii) Model training, and (iv) Model deployment. These stages progressively

convert raw data sets into machine learning models that are deployed to automate

various decision-making processes.

We look at machine learning pipelines across three important scientific domains identi-

fying characteristics of all four stages.

Example 1: Detecting Rare Events in High-Energy Physics Data. Machine

learning pipelines are prevalent in High-Energy Physics, a data-intensive domain where

particle accelerators (such as the Large Hadron Collider) generate petabytes of data

every day. One such pipeline is deployed at the European Organization for Nuclear

Research (CERN). This pipeline uses deep learning models to detect rare events in data

generated by particle accelerators. Rare events have specific statistical signature and

are of interest to particle physicists (Nguyen et al. 2019).

We find all four stages of machine learning pipelines here. This pipeline begins at the

data exploration phase: Data scientists use filters and statistical properties to narrow

down a training set that contains su�cient examples of rare and interesting events. The

next step is to design a deep learning model that can learn to detect rare events from

the training data set with high accuracy. To do this, data scientists use a sample of

the training data set to choose between hundreds of deep learning models that range

from fully-connected neural networks to convolutional and recurrent neural networks.

The selected model is then trained on the entire training data set. The trained model

is then deployed and it is periodically retrained to account for new data.

Example 2: Linking Cell Expression to Genetic Data. Genomics is another

domain that employs machine learning pipelines. An important area of inquiry in

genomics is to understand the relationship between genotype (genetic information stored

in the DNA) and phenotype (the cells that make up an organism) (Moen et al. 2019). A

machine learning pipeline is used to automatically learn this relationship from genetic

data originating from various sensors (Culley et al. 2020).

In this machine learning pipeline, the first step (which falls under data exploration)

involves correlation analyses between di↵erent streams of sensor data. The aim here is

to discover which subsets of data provide the most information for model design and
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training. In the next stage, i.e., model design, genomic researchers come up with custom

neural network models called Multi-modal Artificial Neural Networks that can integrate

information from various genetic data sources. This design process requires an extensive

set of experiments on dozens of existing models. The finalized model is then trained and

evaluated on various combinations of data sources and made available to the genomics

research community.

Example 3: Discovering New Planets from Telescope Data. Finally, we look at

a machine learning pipeline in Astronomy. In this field, a major new source of data is

NASA’s Kepler Space Telescope program. This program captures signatures of various

planets in the solar system that have similar properties to planet Earth. The data

it captures, however, is extremely large and noisy. By using deep learning pipelines

identical to those used in image classification, astronomers recently discovered two new

planets (Shallue and Vanderburg 2018).

We see all four stages at work in this machine learning pipeline: In the first step,

through a combination of filtering and exploratory statistical analysis, data scientists

synthesize the training data from three di↵erent data sources. During the design stage,

data scientists search over the design space of various types of convolutional neural

network models. During the training phase, they train multiple copies of the same se-

lected model with di↵erent initializations to create an ensemble having various diversely-

trained networks. Finally, during the deployment phase, outputs from every network of

the ensemble are averaged together to produce a final set of predictions for candidate

planets. These set of predictions are then verified by astronomers.

Machine Learning Pipelines are Everywhere. These pipelines are not exclusive

to these three domains but we can find instances of these pipelines across all areas

ranging from education to agriculture to finance (Boehm et al. 2019). Overall, these

pipelines allow data scientists and experts from various domains to convert raw data

into deployable models that can enable multiple forms of decision-making.
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Queries target sub-ranges of 
other queries

Queries’ ranges partially 
overlap with other queries

Queries ask for different 
statistics on the same range

Queries show a mixture of the 
aforementioned repetitionstime

Column Query range Statistic types

Q1:
Q2:
Q3:

Figure 1.1: In exploratory statistical analysis, queries request for a given statistic on a
given data range and show various forms of repetition.

1.3 Bottleneck: Repeated Computation and Data Movement

All stages of machine learning pipelines have their own set of algorithms and techniques.

However, they su↵er from a shared challenge: They involve repeated computation on

huge data sets. This bottleneck slows down all stages of machine learning pipelines.

Slow machine learning pipelines are problematic as many applications, such as medical

diagnosis and self-driving cars, require quickly processing new data and incorporating

it into deployed models. For instance, in one use case, where deep learning models are

applied to detect Diabetic Retinopathy (a leading cause of blindness), newly-labeled

images become available every hour. Thus, incorporating new data in the neural network

models as quickly as possible is crucial to enable a more accurate diagnosis for the

immediately next patient (Gulshan et al. 2016). Additionally, slow machine learning

pipelines limit machine learning’s reach as only application scenarios with a significant

amount of compute and memory resources can feasibly use these pipelines.

We characterize the sources of this bottleneck, i.e., repeated computation and data

movement, across the di↵erent stages of machine learning pipelines:

1.3.1 Data Exploration

Data Exploration and Statistics. Machine learning pipelines begin with a data

exploration phase where statistics play an essential role (Surajit 2016). During this

phase, data scientists develop an initial understanding of the data by using statistics

to summarize variables within the data set, understand trends in variables, and cor-

relate these trends with those of other variables (Guo 2012; Madigan and Wasserstein

2013). For instance, variance in seismic activity of an area represents how prone it is
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to earthquakes, and correlations between seismic measurements across various sensors

help to predict future patterns of seismic activity (Williams et al. 2010). Moreover,

statistics – such as mean, variance, and correlations – serve as building blocks of core

machine learning classification and filtering algorithms such as simple linear regression,

Bayesian classification, and collaborative filtering (Bishop 2006). Overall, statistical

analysis forms the staple of data exploration across all fields.

Bottleneck: Repetitive Calculation of Statistics. Exploratory statistical analysis,

a typically unstructured procedure, results in the repetitive calculation of statistics.

Every result provides data scientists with knowledge and cues for what to ask next or

which model to try out. Di↵erent statistics are successively calculated on the same

part of the data. Even the exact statistics are recomputed with varying resolution

and on data ranges (data portions) that overlap with previously accessed data ranges.

E↵ectively an exploration session consists of numerous such repeated queries until a

pattern is found (Idreos et al. 2015). Figure 1.2 summarizes di↵erent forms of such

repetitive access patterns. Overall, these repetitive access patterns result in repeated

computation and data movement, slowing down the process of exploratory analysis.

1.3.2 Model Design

Designing Deep Learning Models under a Resource Budget. The next step

in the machine learning pipeline is model design, i.e., deciding on what model to use

for a specific application scenario. Modern machine learning pipelines increasingly use

deep learning models to capture complex patterns in data sets. Designers of these deep

learning models navigate a complex design landscape: To start o↵, they decide on a

network architecture to use in their model. Then, they have to consider whether to use

a single network or build an ensemble model with multiple networks. Additionally, they

have to decide how many neural networks to use as well as their individual designs i.e., to

find a desirable configuration of depth, width, and number of networks in their model.

Modern applications with diverse requirements further complicate these decisions as

what is desirable varies. Facebook, for instance, requires convolutional neural network

models that strike specific tradeo↵s between accuracy and inference time across 250
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di↵erent types of smartphones (Wu et al. 2019). As a result, not just accuracy but

a diversity of metrics – such as inference time and memory usage – inform whether a

model gets used (Sze et al. 2017b).

Bottleneck: Lack of a Robust and Holistic Assessment. There is no holistic

empirical or theoretical framework to consistently analyze the relationship between a

neural network design (with a given configuration of depth, width, and number of net-

works) and various metrics of interest such as accuracy, training time, and memory

usage. As a result model designer rely on incomplete conventional wisdoms that result

in either a series of sub-optimal designs or expensive hit-and-trial exploration of the

design space. Both of these outcomes ultimately result in repeated computation and

data movement as multiple models have to be trained and analyzed every single time.

1.3.3 Training and Deployment

Training and Deploying Neural Network Ensembles. The next step in machine

learning pipelines is to train and deploy the machine learning model. Here, various

applications increasingly train and deploy ensembles of multiple neural networks. This

is because ensembles function as collections of experts and have been shown, both theo-

retically and empirically, to improve generalization accuracy (Russakovsky et al. 2015).

For instance, deep neural network ensembles predict relationships between chemical

structure and reactivity (Agrafiotis et al. 2002), segment complex images with multiple

objects (Ju et al. 2017), and are used in zero-shot as well as multiple-choice learning

(Guzman-Rivera et al. 2014; Ye and Guo 2017). Further, several winners and top per-

formers on the ImageNet challenge are ensembles of neural networks (Lee et al. 2015a;

Russakovsky et al. 2015).

Bottleneck: The Growing Training and Deployment Cost. Using ensembles of

multiple deep neural networks takes a prohibitively large amount of time and compu-

tational resources. Even on high-performance hardware, a single deep neural network

may take several days to train. This training cost grows linearly with the ensemble’s

size as every neural network in the ensemble needs to be trained (Szegedy et al. 2015; He

7



(i) Data exploration (ii) Model design (iii) Model training (iv) Model deployment

Queriosity
Data Canopy More or Less MotherNets Shared-MotherNets

Figure 1.2: We design computation-cautious machine learning systems that address the
bottleneck of repeated computation and data movement across all stages of machine
learning pipelines.

et al. 2016; Huang et al. 2017b,a). Similarly, during deployment, we need to infer from

every member of the neural network ensemble. The rising cost boils down to repeated

computation and data movement: During training, multiple di↵erent neural networks

need to be trained. During deployment, every data item needs to be passed through all

of the neural networks in the ensemble.

1.4 Computation-Cautious Machine Learning Systems

We design Computation-Cautious Machine Learning Systems that address the growing

bottleneck of repeated computation and data movement across all stages of machine

learning pipelines: Data Canopy accelerates the process of exploratory statistical anal-

ysis by reusing computation and data movement between di↵erent statistical queries.

Deep Collider demystifies the process of model design through an empirical framework

to holistically analyze the design space of neural network models. Finally, MotherNets

enable rapid training and deployment of neural network ensembles by sharing compu-

tation and data movement between di↵erent neural networks in an ensemble.

1.4.1 Data Canopy: Reuse During Data Exploration

We take a step to address the bottleneck of repeated computation and data movement

during data exploration through Data Canopy, where statistics are synthesized from

a library of basic aggregates computed and managed over sub-ranges of the data set.

Data Canopy enables the reuse of these basic aggregates across overlapping parts of the

data set and between di↵erent types of statistics. Data Canopy can be populated ahead
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of time (with a single pass over the data set), during the analysis phase itself, or in an

opportunistic manner. Future queries can avoid having to repeatedly go back to the base

data but instead can synthesize statistics from Data Canopy. Compared to state-of-the-

art tools (such as NumPy and Modeltools) that provide static and slow performance,

the performance of Data Canopy keeps on improving as future queries can use past

computation and data access leading to multiple orders of magnitude improvement in

the speed of exploratory workloads and statistics-based machine learning algorithms.

1.4.2 Deep Collider: Demystifying Machine Learning Model De-

sign Under a Parameter Budget

We develop a detailed and extensive experimental framework to isolate the impact of

the critical design knobs: (i) depth, (ii) width, and (iii) number of networks, on all

relevant metrics: (i) accuracy, (ii) training time, (iii) inference time, and (iv) memory

usage. Crucially the number of parameters is a control knob in this framework and

remains fixed across results that can be studied together. We apply this framework to

a critical part of the design space that is not well-understood: That is how to decide

between the alternatives of expanding a single network model or increasing the number

of networks and using them together in an ensemble. This framework questions and

expands the conventional wisdom in deep learning model design: We show that under a

parameter budget, ensembles can provide not only better accuracy than a single model

but can also train and deploy faster while using far less memory

1.4.3 MotherNets: Sharing Computation During Model Training

and Deployment

During the training and deploying of deep neural network ensembles, we address this

bottleneck of repeated computation and data movement through MotherNets. The high-

level idea is to first capture the structural similarity present in a given ensemble in the

form of one or more MotherNets and then to train or infer from these MotherNets only

once. During training, instead of every network, only the MotherNets are trained from

scratch. What is learned by the trained MotherNets is then transferred to every member
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of the ensemble; Every network only requires a minor amount of incremental training.

MotherNets, in a similar fashion, improves deployment, where parameters originating

from the MotherNets are tied together during training. This yields an ensemble with

a single copy of MotherNets parameters reducing the inference time and memory re-

quirement significantly. MotherNets is the first general-purpose fast ensemble training

and deployment technique that extends to ensembles of diverse architectures as opposed

to state-of-the-art approaches that generate ensembles from a monolithic architecture.

MotherNets also establishes a new Pareto frontier for the accuracy-training cost tradeo↵

of deep neural network ensembles and provides the most accuracy for the least amount

of training time when compared to all other ensemble training techniques.

1.4.4 Published Papers

The material in this thesis has been the basis for a number of publications in major

refereed data systems and machine learning venues.

1. Abdul Wasay, Manos Athanassoulis, and Stratos Idreos, Queriosity: Automated

Data Exploration, in Proceedings of the IEEE International Congress on Big

Data, 2015 (Wasay et al. 2015).

2. Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos, Data Canopy: Accel-

erating Exploratory Statistical Analysis, in Proceedings of the ACM SIGMOD

International Conference on Management of Data, 2017 (Wasay et al. 2017).

3. Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos,

MotherNets: Rapid Deep Ensemble Learning, in Proceedings of the Conference

on Machine Learning and Systems MLSys, 2020 (Wasay et al. 2020).

4. Abdul Wasay and Stratos Idreos, More or Less: When and How to Build Convolu-

tional Neural Network Ensembles, in Proceedings of the International Conference

on Learning Representation ICLR, 2021 (Wasay and Idreos 2021).

5. Abdul Wasay, Subarna Chatterjee, and Stratos Idreos, Deep Learning: Systems

and Responsibility, in Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, 2021 (Wasay et al. 2021).

10



1.5 Thesis Outline (How to Read)

We organize the rest of the thesis as follows. First, Chapter 2 provides background

on various stages of machine learning pipelines. In specific, we provide an overview of

(i) data exploration and the role played by statistics in this process, (ii) fundamentals

of deep neural networks and how to train and deploy them, (iii) basics of neural net-

works ensembles, and (iv) how we can transfer what is learned by one model to another.

Chapter 3 positions Computation-Cautious Machine Learning Systems with respect to

related work from data systems and machine learning communities. We outline the nov-

elty this thesis brings on top of existing systems and frameworks. After reading Chapter

3, the rest of the chapters can be read independently. Chapter 4 through Chapter 6

describe the three Computation-Cautious Machine Learning Systems: Data Canopy,

Deep Collider, and MotherNets. We provide detailed system design and algorithms.

We also extensively evaluate these systems and show how they advance state-of-the-art

techniques in their respective stages of machine learning pipelines. Finally, in Chapter

7, we conclude and discuss primary future research goals for Computation-Cautious

Machine Learning Systems.
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2
Background

2.1 Data Exploration and Statistics

Many machine learning pipelines across di↵erent fields begin with a data exploration

phase (Surajit 2016). During this phase, data scientists develop an initial understanding

of the data by using statistics to summarize variables within the data set, understand

trends in variables, and correlate these trends with those of other variables (Guo 2012;

Madigan and Wasserstein 2013). For instance, variance in seismic activity of an area

represents how prone it is to earthquakes, and correlations between seismic measure-

ments across various sensors help to predict future patterns of seismic activity (Williams

et al. 2010). Moreover, statistics – such as mean, variance, and correlations – serve as

building blocks of core machine learning classification and filtering algorithms such

as simple linear regression, Bayesian classification, and collaborative filtering (Bishop

2006). Overall, statistical analysis forms the staple of data exploration across all fields.
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Exact Template Column set
repetition repetition repetition

SQLShare 54.65% 36.93% 4%
SDSS 99.8% 99.7% 97%

Table 2.1: Exploratory workloads in the sciences exhibit high repetition in queries.

2.1.1 Characterizing Exploratory Workloads

Exploratory statistical analysis, a typically unstructured procedure, results in the repet-

itive calculation of statistics. Every result provides data scientists with knowledge and

cues on what to ask next or which model to try out. By query here, we mean a request

to compute a given statistic over a given data part. Di↵erent statistics are successively

computed on the same part of the data. Even the exact statistics are recomputed

with varying resolution and on data ranges (data portions) that overlap with previ-

ously accessed data ranges. E↵ectively an exploration session consists of numerous such

repeated queries until a pattern is found (Idreos et al. 2015).

Repetition appears in various forms in various workloads. Table 2.1 shows the repetition

in two publicly available workloads: SDSS SkyServer (Foundation) and SQLShare (Howe

et al.). These workloads are composed of both handwritten and computer-generated

SQL queries. Up to 97 percent of the queries repeat at least once in SDSS. Queries

repeat less frequently in the SQLShare workload. However, up to 55 percent of queries

still target a non-distinct set of columns. Furthermore, studies show that repetition is

higher in interactive exploratory analysis (Jain et al. 2016).

2.1.2 Data Science Tools and Statistics

Data scientists have a spectrum of tools available to them for exploratory statistical

analysis. At one end, this spectrum includes software libraries, such as NumPy (num

2013) and Modeltools (Foundation 2016), with flexible functionality but no in-built

data management. On the other end of this spectrum are highly-optimized relational

database systems but with limited statistical functionality. Database connectors like

SciDB-Py (SciDB 2016), MonetDB.R (Mühleisen and Lumley 2013), and Psycopg (psy

13



2014) connect a database backend with a flexible language, thereby providing a good

compromise between flexibility and data management. Such connectors o↵er the pri-

mary benefit of computing statistics inside the database system without moving data.

2.2 Deep Learning

Deep learning has seen an increasing amount of success thanks to deep neural networks,

a set of powerful computational models that can learn intricate and complex patterns

directly from data (LeCun et al. 2015). Researchers across several research communities

can now solve problems that had evaded them for decades by applying deep neural

networks. For instance, by applying deep learning models, researchers can localize and

label objects within an image 3⇥more accurately than state-of-the-art classical methods

(Liu et al. 2020). These intricate computational models have come to power countless

aspects of our society today: Deep neural networks can translate languages, help drive

cars, and diagnose various diseases (Kim 2014; Dong et al. 2015; Niepert et al. 2016;

Shen et al. 2017).

The concept of deep learning has been around for over half a century. Researchers in-

troduced neural networks in the forties and developed algorithms to train them in the

sixties (McCulloch and Pitts 1943; Rosenblatt 1958; Widrow et al. 1960). In the past

decade, however, three complimentary trends have catapulted deep learning into the

academic and industrial limelight: First, hardware capabilities have improved remark-

ably (Sze et al. 2017a). With massive data parallelism, GPUs and TPUs can now train

and deploy deep neural networks faster than ever before. Second, we can collect, store,

and manage data at an unprecedented scale (Roh et al. 2019). Innovation in sensor

technology, storage media, and database systems has significantly reduced the cost of

obtaining data to feed deep neural networks. Finally, all key players in the computer

science industry developed and open-sourced software libraries to design, train, and de-

ploy deep neural networks (Nguyen et al. 2019). As such, researchers and practitioners

in any field of human knowledge can quickly prototype and use deep learning pipelines.

The future holds even more promise as researchers and practitioners develop bespoke

neural network architectures and cultivate an ecosystem of hardware and software to

better support existing and emerging deep learning architectures.
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2.2.1 Deep Neural Networks

Deep neural networks are the workhorse of deep learning. They are capable of learning

arbitrary functions from massive data sets. For instance, in classification tasks, deep

neural networks can learn the mapping between data items and their labels, whereas, in

sequence prediction tasks, they can learn how a given sequence relates to the sequence

that follows it. What makes deep neural networks extremely powerful is that they

automatically discover an appropriate representation from a large amount of training

data for a given task. Data scientists can apply deep neural networks to new and

arbitrary tasks, for which expert knowledge is either lacking or unscalable.

We can see an exciting example of deep neural network’s versatility in how they are

applied to diagnose Diabetic Retinopathy (a leading cause of blindness) (Kanungo et al.

2017). In this domain, experts are in short supply and are concentrated in a few

geographical areas. However, they can conveniently label images gathered from various

patients across the world. These labeled images are then used to train convolutional

neural networks that are then deployed in mobile phones. Now, anyone with a mobile

device can take a picture of a patient’s eye and screen for Diabetic Retinopathy.

Deep neural networks today have dozens of layers consisting of non-linear modules.

Every layer transforms its input from one level of representation to a more abstract level,

which better captures aspects of the data set that are meaningful for a classification

or detection task. For instance, when classifying images, the first layer may capture

an image’s low-level properties, such as the presence or absence of edges or dots. The

second layer combines these properties to detect motifs such as a collection of edges.

The third layer can assemble these motifs further, and the following layers can detect

even more complex combinations of motifs (Zeiler and Fergus 2014; LeCun et al. 2015).

Crucially, deep neural networks can learn these representations using a general-purpose

training procedure.

We introduce various concepts related to the fundamental structure, training, and de-

ployment of neural networks. We align our notation with that of Goodfellow et al.

(2016). We summarize this notation in Table 2.2.
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Figure 2.1: Neural networks are made up of layers of neurons, each neuron takes as
input a subset of neurons from the previous layer and applies a set of weights to them.

2.2.2 Fundamentals of Deep Neural Networks

Neuron. A neuron is the fundamental building block of a neural network. Every

neuron has an associated set of parameters or weights and, optionally, a non-linearity

or activation function. Figure 2.1 depicts two layers of a neural network, where one of

the neurons is highlighted in bold. The set of weights and the activation function of

the highlighted neuron are {w1, w2, w3} and g(·) respectively. A neuron takes as input

one or more neurons’ output (or if the neuron is from the first hidden layer, it takes as

input some region from within the input data item such as one or more pixels from an

image) and computes an output. The output of a neuron is a function of its weights

and the inputs it receives.

Layer. A layer in a neural network is composed of a set of neurons. The neurons in

a certain layer interact with output from the previous layer. The output of this layer

feeds into the next layer. In general, a neural network consists of an input layer, an

output layer, and one or more hidden layers. Figure 2.1 depicts two layers (labelled

layer i and layer i + 1) with three neurons each.

Receptive Field. Every neuron in a layer has an associated receptive field, which is

the subset of neurons from the previous layer fed as input to that neuron. In Figure 2.1,

the receptive field of the highlighted neuron consists of every neuron from the previous
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Description Notation

Training data set X(train) = {x(1), ...,x(m)}; Y (train) = {y(1), ...,y(m)}
NN parameters ✓
Function of a NN f(·,✓)

Training predictions Ŷ
(train)

= {ŷ(1), ..., ŷ(m)}
Empirical loss J(✓)

Test data set X(test) = {x(1), ...,x(m0)}; Y (test) = {y(1), ...,y(m0)}
Trasnfer data set X(tran) = {x(1), ...,x(m⇤)}; Y (tran) = {y(1), ...,y(m⇤)}

Table 2.2: List of notations used throughout this chapter.

layer. This neuron is an example of a fully-connected neuron. In some cases, this

connectivity can be sparser, as is the case with convolutional neurons discussed later

on.

Neural Network Parameters. For a given neural network, the superset of all weights

associated with all of its neurons are called its parameters.

Neural Network Architecture. We refer to the overall setting of a neural network

as its architecture. A neural network architecture consists of various factors, including

the number of layers, number of neurons in every layer, types of neurons, activation

functions, and connectivity patterns between layers. Researchers and deep learning

practitioners design dozens of new architectures every year to suit specific application

needs and improve upon existing architectures’ e�ciency and quality. For instance,

VGGNets, ResNets, Wide ResNets, and DenseNets are examples of di↵erent neural

network architectures designed for image classification in the last decade.

2.3 Deep Learning and Classification

Classification is a fundamental problem in machine learning that has captured the at-

tention of multiple generations of researchers across multiple fields. Given a data item,

classification is concerned with determining which of a predefined set of classes the data

item belongs to. Spam detection is a canonical classification problem, where given a

bunch of emails, we are interested in putting them in one of two classes – spam or not
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spam. Similarly, another example is from computer vision, where we are interested in

determining the class to which an image belongs.

Generally speaking, machine learning classification is concerned with assigning labels

to data belonging to a sample space. Formally, the sample space takes the form X ⇥Y ,

where X is the space of data and Y is the space of labels. x 2 X is a data item of

an arbitrary form, whereas y 2 Y represents one of k class labels {1, 2 . . . k}. We are

interested in using a machine learning model to learn the mapping between X and Y

from a training data set. For instance, in CIFAR-10, a popular benchmark data set for

image classification, x is an image, and y is the set of corresponding labels, i.e., one of

the ten categories of everyday objects (cars, dogs, cats, etc.) (Krizhevsky 2009). Figure

2.2 shows sample images belonging to each of the ten classes in the CIFAR-10 dataset.

Recently, deep neural networks have made great strides in providing close-to-human

performance on various classification tasks ranging from sentiment analysis to computer

vision. The advantage that deep neural network models bring to classification is that

they automatically infer features from labeled data during training. Consider the case

of image classification. Before deep learning, computer vision researchers tried all sorts

of things ranging from geometric methods that automatically detect edges and shapes

to hand-engineered features (where an expert specifies aspects of images that they think

are consequential to the classification task) (Huang 1996). Deep learning revolutionized

image classification. Convolutional neural networks operating on huge data sets can

automatically discover aspects or features of an image – such as dots, edges, and shapes

– that are important for a given classification task.

2.3.1 Training Deep Neural Networks for Classification Tasks

Once a deep neural network architecture is specified, the training process is composed

of alternating forward and backward passes until a specified metric (usually training ac-

curacy) converges. Algorithm 2.1 provides an overview of this training process. Overall,

during the training process, a set of labeled inputs is provided to the neural network.

Based on this labeled data set, the neural network iteratively adjust its weights to learn

a mapping function between the data and its labels.
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Figure 2.2: The CIFAR-10 dataset consists of images of everyday object. Each image
is of size 32 ⇥ 32 pixels and has one of ten labels attached to it.

Training Data Set. The training data set, also referred to as the labelled data set,

consists of m ordered data items X(train) = {x(1), ...,x(m)} and corresponding labels

Y (train) = {y(1), ...,y(m)}. Here, x(i) is a vector of arbitrary length and y(i) is a vector

having as many components as labels in the data set and the component corresponding

to the label of x(i) is set to 1 and the rest of the components are set to 0, i.e., the labels

are encoded using their one-hot representation. The CIFAR-10 dataset, for instance,

consists of 50K training images. An image belongs to one of ten classes.

Forward Pass. Given a neural network architecture with parameters ✓, the forward

pass executes the neural network from the input layer to the output layer. Initially,

the parameters ✓ are initialized in a random manner. The forward pass proceeds by

sequentially applying all parameters associated with every layer to the previous layer

and feeding its output to the next layer. This results in a set of predictions Ŷ
(train)

=

{ŷ(1), ..., ŷ(m)} corresponding to items in X(train). Here, ŷ(i) = f(x(i),✓), where f(·,✓)

is the functional mapping of the neural network.

Empirical or Training Loss. The empirical or the training loss J(Ŷ
(train)

,Y (train))

quantifies how di↵erent the predictions Ŷ
(train)

are from the labels (or the ground truth)

Y (train). This loss can take various forms depending on the problem at hand and is

usually di↵erentiable with respect to the parameters ✓.

Backward Pass. During the backward pass, based on the quality of the prediction, the

weights associated with the neural network are adjusted. This step usually involves an

optimization method such as gradient descent. In gradient descent, first, we compute

the gradient of the training loss J(✓) with respect to the parameters. Then, every

parameter in ✓ is adjusted in the opposite direction of the gradient. The learning rate
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Algorithm 2.1 Generalized deep neural network training procedure

Input: X(train),Y (train), f(·);
Initialize: ✓;

while network does not converge do
// Execute forward pass

Ŷ
(train)  f(X(train),✓)

// Quantify the empirical loss

J(✓) J(Ŷ
(train)

,Y (train))
// Compute gradient

G(✓) @J(✓)
@✓

// Update parameters

✓  ✓ � ⌘ · G(✓)
end

return f(·,✓)

⌘ quantifies how aggressively this adjustment takes place.

Convergence. A neural network is trained through a sequence of alternating forward

and backward passes until a convergence criterion is met. There are various convergence

criteria introduced in research. A simple criterion is to continue training until specified

training rounds have been exceeded or a specific training loss has been achieved. Another

criterion is to train until further training does not significantly alter the neural network

parameters or improve its training loss.

2.3.2 Evaluation Metrics for Deep Neural Network Training

Metrics to evaluate deep neural networks fall under two categories: (i) Those related to

quality, e.g., accuracy and robustness, and (ii) those related to the amount of resources

required, e.g., training time, inference time, and memory usage. Modern deep learning

pipelines are designed to optimize for one or a combination of these two sets of metrics. A

primary goal is to achieve as high generalization accuracy as possible without incurring

a significant increase in the training or inference cost.
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Generalization Accuracy. When training a deep neural network, we would like to

achieve as high as possible generalization accuracy, i.e., maximize its performance on

a data set that the neural network has not seen before. This data set is still from

the same sample space X ⇥ Y as the training data set. For instance, in our running

example of the CIFAR-10 data set, we are interested in how well a neural network can

classify images that are not present in – but are similar to those in the training data

set. To quantify the generalization accuracy of a neural network, we use a test data

set X(test) = {x(1), ...,x(m0)} and corresponding labels Y (test) = {y(1), ...,y(m0)}. The

generalization accuracy is defined as the proportion of the test data set that is correctly

classified by the neural network:

Acc =

Pm0

i=1 (arg max(y(i)) = arg max(f(x(i),✓)))

m0

Here, (.) is an indicator function that outputs 1 when its input is true and 0 otherwise.

We use arg max to extract the label from both the ground label vector y(i) and the

prediction vector f(x(i),✓). We will also refer to the above metric as the test accuracy.

The additive inverse of the generalization accuracy is called the generalization error

(also referred to as the test error).

Training Time Per Epoch. Given hardware and data set, the training time per epoch

is the amount of time it takes to complete one round of training of a neural network,

i.e., one forward and one backward pass, on the entire training data set.

Total Training Time. The total training time is how long it takes for a neural network

to converge, given the convergence criterion. We can express this time as the product

of the number of epochs it takes to converge and the time taken per epoch.

Memory Usage. The memory a given neural network requires to train is another

important metric. It is the total GPU and CPU memory needed to store the network

parameters, training data set, and intermediate feature maps.

Inference Time. Once a trained neural network is deployed on particular hardware,

the amount of time it takes to classify one data item is known as its inference time.
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2.4 Convolutional Neural Networks

Next, we describe convolutional neural networks that are widely used in computer vi-

sion. Convolutional neural networks (ConvNets) are a particular class of deep neural

networks that consider the spatial structure present in images and videos. By doing

so, ConvNets are both more e�cient and accurate at classifying images when compared

with fully-connected neural networks. In particular, there are two significant ways in

which ConvNets are tailored toward images and videos. First, layers in ConvNets have

neurons arranged in three dimensions (width, height, and depth) to mimic the three-

dimensional nature of image data sets. Second, ConvNets have two characteristic layers

known as convolutional layers and pooling layers that take advantage of the fact that

images have spatially-localized structure, i.e., images are not bags of pixels but rather

that the position of pixels is important.

2.4.1 Three-Dimensional Layers

Images are three-dimensional grids with spatial dimensions (width and height) and

depth (i.e., RGB values). In CIFAR-10, for example, every image has spatial dimensions

32 ⇥ 32 and a depth of 3 corresponding to the three RGB channels. ConvNets mimic

this image structure and have three-dimensional layers having width, depth, and height.

E↵ectively, each layer is a volume of neurons that operates on a volume of inputs and

produces a volume of outputs. The intermediate outputs in a ConvNet are also referred

to as feature maps as they capture features from images that are consequential to the

computer vision task, i.e., image classification or object detection.

2.4.2 Types of Layers in ConvNets

ConvNets are composed of four di↵erent types of layers: convolutional, RELU, pooling,

and fully-connected. Figure 2.3 shows a ConvNet with one example of each of these

layer types. Figure 2.4 depicts the VGGNet architecture (a seminal convolutional neural

network) composed of several sequences of all four layers. We describe every layer type.
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Figure 2.3: Convolutional neural networks are made up of various types of layers, each
designed to serve a specific function.

Convolutional Layer. Convolutional layers have spatially connected neurons, i.e.,

neurons in a convolutional layer are only connected to a subset of neurons from the

previous layer. Every neuron in this layer has a receptive field in the form of a cuboid,

i.e., it operates on a small volume that extends through the full depth of the previous

layer. The receptive fields of di↵erent neurons can have di↵erent degrees of overlaps

between them controlled by the stride length. Every neuron computes the dot product

between its receptive field and weights, producing a single numerical value as is the case

for neurons in a fully-connected network. Typically, a convolutional layer has multiple

stacks of neurons. Every stack of neurons produces a stack of outputs. The depth of the

outputs produced is equal to the number of stacks. In Figure 2.3, the convolutional layer

has neurons with a square receptive field of size 2⇥2, strided with a stride length of one,

and there are two stacks of such neurons. Overall, this convolutional layer produces an

output layer with depth two.

RELU Layer. RELU (Rectified Linear Unit) is one of the most popular activation

function for neural networks. ReLU outputs the input directly if it is positive; otherwise,

it provides zero as the output:

ReLU(x) = max(0, x)

The RELU layer applies this function to every element in its input layer, keeping both

the spatial dimension and the depth intact.
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Figure 2.4: The VGGNet architecture is composed of a sequence of convolutional, ReLU,
and pooling layers. The input image is successively transformed into a smaller more
semantically meaningful form.

Pooling Layer. This layer reduces the spatial dimension (width and depth) of its input

layer while preserving the depth. Sometimes, we also refer to it as the downsampling

layer. Given a pooling function, a stride length, and a spatial receptive field, the pooling

layer operates independently on every input layer’s depth. It applies the pooling function

to every box of the given receptive field strided with the given stride length. The pooling

function is a non-linear downsampling function such as average or max. Figure 2.3 shows

a pooling layer having neurons with a receptive field of size 2⇥2 and unit stride length.

Fully-Connected Layer. One or more fully-connected layers appear toward the end

of ConvNets. Every neuron in this layer connects to every neuron in the previous layer.

Each neuron has a set of associated weights (as many neurons in the previous layer).

The last fully-connected layer’s output is typically a probability distribution over labels

associated with the input data item. In Figure 2.3, the last fully-connected layer has four

neurons. Together, these neurons provide an output that maps to a discrete probability

distribution spread over four labels.
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General Architecture of ConvNets. Typically a ConvNet architecture begins with

one or more sequences of alternating convolutional and RELU layers, each followed

by one or more pooling layers. This sequence of layers transforms the image from its

original size to a smaller size and extracts features relevant to the classification task.

Toward the end, there are one or more fully-connected layers. The last fully-connected

layer holds the scores for every label in the classification task.

Training and Deploying ConvNets.. Convolutional neural networks can be trained

in an end-to-end manner in the same way as fully-connected neural networks using

gradient descent as described in Algorithm 2.1.

2.5 Deep Neural Network Ensembles

Ensemble learning is a prevalent approach to improve the quality of machine learning

pipelines. The central idea is to train multiple diverse models to perform the same

task and then combine their results during inference (Dietterich 2000). For instance,

random decision forest, a popular ensemble learning algorithm, trains multiple (possibly

hundreds) of individual decision tree models using the same training data. During

deployment, the output from each of the decision trees is aggregated to provide the

final output. Over the years, researchers and practitioners have used ensembles of

virtually all machine learning algorithms to scale the capacity and accuracy of their

machine learning pipelines (Drucker et al. 1993; Dietterich 2000; Granitto et al. 2005;

Xu et al. 2014; Lee et al. 2015a; Russakovsky et al. 2015; Huggins et al. 2016).

Ensembles typically provide higher generalization accuracy than any of the individual

models they contain. Various formal justifications have been provided to explain this.

First, ensembles enrich the space of hypotheses considered and are representationally

richer (Domingos 1999). Second, when these ensembles are combined, using some form

of averaging, the models’ variation, which is an artifact of stochastic training and the

non-convex objective function, is reduced (Dietterich 2000).

Ensembles of deep neural networks are also increasingly used to scale the representa-

tional power of deep learning pipelines and improve their generalization accuracy (Huang
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et al. 2017a; Wasay et al. 2020). They are widely used in online competitions such as

the ImageNet challenge and COCO and applications with high accuracy requirements

(Russakovsky et al. 2015; Huang et al. 2017a).

2.5.1 Training Deep Neural Network Ensembles.

There are two baseline approaches to train deep neural network ensembles depending

on whether we use the entire data set or a di↵erent sample of the data set to train every

network in the ensemble. The most prevalent method to train ensembles of neural

networks is full data training. Here, we train all ensemble networks independently using

the entire data set. This yields highly-accurate ensembles but also requires significant

amount of training time. The second method, i.e., bagging or bootstrap aggregation,

reduces the training time but comes at the cost of decrease in accuracy. Here, we train

the network on a bagged set sampled from the training data. Given n training examples,

we sample n times from it with replacement to create the bagged set. E↵ectively, this

produces a training set that has less unique data items when compared with the full

training data set.

For both of these methods – full data training and bagging – the individual network

training proceeds as usual (using Algorithm 2.1). Formally, this yields k neural networks

with k di↵erent functional mappings {f1(·,✓1), ..., fk(·,✓k)}.

2.5.2 Deploying Deep Neural Network Ensembles

During deployment, to classify a data item, we pass it through every network in the

ensemble. This step produces a set of outputs, one for every network in the ensemble.

These outputs are then combined to produce the final output.

Formally, any data item x(i) is passed through each of the ensemble networks, producing

k predictions {ŷ(i)
1 , ..., ŷ(i)

k }. These k predictions are then combined together through

an aggregation function (Ju et al. 2017).

Ensemble averaging and voting are two of the most commonly used aggregation func-

tions. In ensemble averaging, the individual network outputs ({ŷ(i)
1 , ..., ŷ(i)

k }) are aver-

26



aged to produce ŷ(i)
e , the final ensemble output for the i-th test data item.

ŷ(i)
e =

kX

j=1

ŷ(i)
j /k

In voting, on the other hand, we look at the prediction of every neural network in the

ensemble and output the prediction produced by a majority of the ensemble networks

breaking ties randomly.

ŷ(i)
e [j] =

8
<

:
1, if j = mode(arg max(ŷ(i)

1 ), ..., arg max(ŷ(i)
k ))

0, otherwise

2.5.3 Deep Neural Network Ensembles in Practice

Various applications increasingly use ensembles of multiple neural networks to scale the

representational power of their deep learning pipelines. For example, deep neural net-

work ensembles predict relationships between chemical structure and reactivity (Agrafi-

otis et al. 2002), segment complex images with multiple objects (Ju et al. 2017), and

are used in zero-shot as well as multiple-choice learning (Guzman-Rivera et al. 2014; Ye

and Guo 2017). Further, several winners and top performers on the ImageNet challenge

are ensembles of neural networks (Lee et al. 2015a; Russakovsky et al. 2015). Ensembles

function as collections of experts and have been shown, both theoretically and empiri-

cally, to improve generalization accuracy (Drucker et al. 1993; Dietterich 2000; Granitto

et al. 2005; Huggins et al. 2016; Ju et al. 2017; Lee et al. 2015a; Russakovsky et al. 2015;

Xu et al. 2014). For instance, by combining several image classification networks on the

CIFAR-10, CIFAR-100, and SVHN data sets, ensembles can reduce the misclassification

rate by up to 20 percent, e.g., from 6 percent to 4.5 percent for ensembles of ResNets

on CIFAR-10 (Huang et al. 2017a; Ju et al. 2017).

While ensembles improve the quality of machine learning pipelines, they can also in-

crease the design and maintenance cost as we need to first design and then maintain

multiple models. Data scientists and machine learning practitioners use various strate-
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gies to address these two challenges. To address the challenge of design cost, ensembles

in practice contain neural networks that are architecturally homogenous, i.e., they repli-

cate a single network design k times (Huang et al. 2017a). This replication eliminates

the cost of ensemble design but results in some decrease in the diversity of the mod-

els. Similarly, there are practical approaches to reduce the cost of maintaining multiple

models. The function learned from large ensembles can be transferred to smaller en-

sembles or even a single network while approximately preserving accuracy. In this way,

ensembles of neural networks help learn a good function during training which is then

transferred quickly to a more compact and manageable model (Hinton et al. 2015).

2.6 Transferring Knowledge between Neural Network Models

Transferring knowledge from one neural network to another neural network is a widely-

used technique to increase or decrease a pre-trained model’s size while retaining what

the model has already learned. For instance, when datasets become more complex,

machine learning practitioners might increase the e↵ective complexity of the model and

use knowledge transfer techniques to ensure that the enlarged model contains similar

knowledge as the already-trained or deployed model. In addition to this, during transfer

learning, data scientists may be interested in initializing a new neural network structure

by using the knowledge from a pre-trained model from one task and then further train

it for a new task. Knowledge transfer is used to accelerate network architecture search

(Weill et al. 2019; Gordon et al. 2018), continuously expand neural networks to incor-

porate new data (Mitchell et al. 2018), and enable training of deeper neural networks

(Romero et al. 2015; Simonyan and Zisserman 2015).

There are various techniques to transfer knowledge between two neural networks. They

can be classified based on whether the knowledge transfer happens through further

training or network transformation.

28



2.6.1 Knowledge Transfer Through Training

In the first class of approaches, the knowledge from a teacher network is transferred

to a student network by training it (on possibly a transfer set) to mimic the teacher

network (Hinton et al. 2015). This approach, known as knowledge distillation, trains

the student network using the teacher network’s probability distribution as the target.

Suppose the labels corresponding to the transfer set are known. In that case, the loss

function is a weighted sum of the empirical loss (i.e., the loss on the transfer set labels)

and the target loss (i.e., the loss on the probability distribution produced by the teacher

neural network model).

Formally, let z(l)
t be the vector of outputs produced by the last layer of the teacher

neural network on the l-th data item from the transfer set. Let z(l)
s be the vector of

outputs produced by the last layer of the student neural network. The total number of

items in the transfer set are m⇤. Then, the distillation loss JD is defined as follows:

JD =
m⇤X

l=1

kX

i=1

�p(z(l)
ti , T ) · log(p(z(l)

si , T ))

In this equation, p is the softmax probability scaled by a temperature factor T . This

temperature factor controls how sharp or spread out the probability distribution is.

p(zi, T ) =
exp(zi/T )

Pk
j=1 exp(zj/T )

The overall loss, is a weighted combination of the distillation loss and the empirical loss

JE of the student network.

J = ↵ · JD + (1� ↵) · JE

This loss is di↵erentiable with respect to the student network parameters and training

proceeds as usual using gradient descent as described in Algorithm 2.1.

Knowledge Distillation is a versatile technique and can transfer knowledge from any
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(a) Deeper networks (b) Wider networks

Figure 2.5: Function preserving transformations can be used to increase the depth and
width of a given network, while preserving its function.

network to any other network. In past research, for instance, Knowledge Distillation

has been used to incrementally train deep learning models and capture the knowledge

from a large ensemble model into a smaller single model (Romero et al. 2015; Simonyan

and Zisserman 2015). Knowledge distillation, however, requires extra training, and the

knowledge is transferred only in an approximate way to the student network.

2.6.2 Knowledge Transfer Through Network Transformation

The second class of techniques to transfer knowledge does not require any extra training

and ensures that the exact function gets transferred from the teacher to the student

neural network (Chen et al. 2016). However, this approach lacks versatility and can

only be used to grow the network’s size, i.e., the student network needs to have the

same or higher width, depth, and convolutional filter sizes compared to the teacher

network. Overall, this approach, known as function-preserving transformation, expands

the network by adding new parameters (increasing its width or depth) and ensuring

that the newly-added parameters cause no change to the network’s function.

We discuss three classes of function-preserving transformations as shown in Figure

2.5: (i) Net2DeeperNet that increases the depth of the network (Figure 2.5(a)), (ii)

Net2WiderNet that widens the network layers (Figure 2.5(b)), and (iii) Net2WiderFilters

that grows the size of convolutional filters (Figure 2.5(c)).
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Net2DeeperNet. This transformation increases the depth of the network by adding

a new layer to the network. It initializes the weights of the newly-added layer with

identity matrices such that the input from the previous layer is passed unchanged to

the next layer.

Specifically, this transformation replaces a layer h(i) = �(h(i�1),W (i)) with two layers

h(i) = �(U (i), �(h(i�1),W (i))). The parameters of the new layer U (i) are initialized

with identity and this transformation is only applicable when �(I,v) = v for any vector

v. This holds for many widely-used layers such as convolutional layers, fully-connected

layers, and ReLU layers. While this transformation cannot be exactly applied to layers

having sigmoid or tanh activation functions, it has been shown empirically that the

resultant transformation still provides some degree of function preservation.

Net2WiderNet. This transformation replaces an existing layer with a wider layer,

i.e., a layer with more neurons. In the case of convolutional neural networks, this means

a layer with more convolutional filters.

Suppose we have two layers i and i + 1 such that layer i has m inputs and n outputs,

whereas layer i+1 has n inputs and p outputs. The associated weights W (i) and W (i+1)

belong to Rm⇥n and Rn⇥p respectively. Net2WiderNet allows us to replace layer i with

a layer that has q > n outputs. To do this, first, we replace W (i) and W (i+1) by U (i)

and U (i+1) respectively. U (i) is constructed such that the first n columns are exactly

the same as W (i) and the remaining columns (n + 1 through q) are chosen randomly

from the first n columns. To neutralize the e↵ect of this replication, weights in W (i+1)

corresponding to a replicated column in W (i) are scaled down by its replication factor.

More specifically the following function enables this transformation:

U (i)
k,j = W (i)

k,g(j), U (i+1)
j,h =

1

|{x|g(x) = g(j)}|W
(i+1)
g(j),h

Where: g(j) =

8
<

:
j j  n

random sample from {1,2, ... n} j > n
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Further Training Transformed Networks. Once we apply one or more of these

transformations to a pre-trained network, it has the same function as before but more

parameters we can further train. We add random noise to perturb these new parameters

to break symmetry and avoid zero-initialized weights. The network is then trained as

before on the training data set.
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3
Related Work

Our work on Computation-Cautions Machine Learning Systems is related to various

research directions from data systems and machine learning research communities. In

particular, we position our work with respect to systems and techniques that improve

various stages of machine learning pipelines, specifically those that (i) improve data

exploration, (ii) enable better understanding of deep learning model design, and (iii)

accelerate training and deployment of deep learning models.

3.1 Efficient Data Exploration

Data exploration is the first step in any data science pipeline, where a data scientist

is interested in understanding various properties of the data set. During exploration,

a data scientist is looking for interesting patterns in massive data sets that are not

known a priori (Idreos 2013; Wasay et al. 2015). This stage presents unique challenges

of scalability, e�ciency, and usability. We discuss research directions that tackle these

challenges and explain how our work in Data Canopy complements and advances state-

of-the-art data exploration techniques.
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3.1.1 Data Exploration and Statistics

Statistics play an important role in data exploration as they summarize data and help

uncover the relationship between di↵erent attributes in the data set. As such, systems

used for exploratory analysis, including data systems, support the computation of statis-

tics. These systems also use statistics to inform various internal optimization processes.

As such, existing research directions design ways to utilize statistics and improve and

enhance their computation.

Statistics in Data Systems

Statistics are widely used within data systems to analyze data and tune various internal

components of the database system: Data systems provide support to compute di↵er-

ent statistics in the form of aggregate operations such as AVG and CORR (Zhao et al.

1997). Also, query optimizers estimate query cardinality by using histogram statistics

(Chaudhuri and Narasayya 1998). Recent approaches employ statistics for data inte-

gration (Halevy 2004; Dalvi and Suciu 2005), time series analysis (Sathe and Aberer

2013; Zhu and Shasha 2002), and in-database learning (Schleich et al. 2016).

Data Canopy vs. Statistics in Data System. Despite the widespread use of statis-

tics in data systems, a framework to synthesize and reuse various statistical measures

during exploratory statistical analysis does not exist. Data Canopy introduces such a

framework, which replaces ad hoc calculation of statistics and brings opportunities to

synthesize statistics from basic aggregates e�ciently; compute and cache these basic ag-

gregates ahead of time, and employ them to accelerate exploratory statistical analysis.

Statistics in Data Canopy, primarily computed for exploratory analysis, can also be used

within the data system for other tasks such as query optimization, data integration, and

data discovery and mining.
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Fast Computation of Statistics

The widespread use of statistics in various systems across the board has led to research

on calculating fast statistics on large data sets. One set of research directions reduces

the amount of data touched to compute statistics while providing accuracy guarantees:

Robust sampling techniques are applied to trade accuracy for performance (Gibbons

et al. 1997; Chaudhuri et al. 1998, 2004; Cormode and Muthukrishnan 2005; Wu et al.

2010) and techniques based on discrete Fourier transform approximate all-pair correla-

tions for time series (Mueen et al. 2010). Other research directions present solutions to

computing statistics at scale in distributed settings: Cumulon is an end-to-end system,

which optimizes the cost of calculating statistics on the cloud (Huang et al. 2013). Simi-

larly, some research directions optimize the calculation of various statistical measures by

correctly partitioning data in distributed settings (Cormode and Muthukrishnan 2005;

Alvanaki and Michel 2014).

Data Canopy vs. Fast Statistics. All these approaches innovate on how statistics

are computed. Therefore, these approaches are compatible with Data Canopy: Data

Canopy can adopt one or even multiple approaches for computing basic aggregates.

For example, in distributed settings, Data Canopy can incorporate the aforementioned

partitioning techniques to ensure that relevant data is stored at local nodes. Similarly,

the computation of statistics in Data Canopy can be done approximately. The pri-

mary advantage of combining Data Canopy with these approaches is that Data Canopy

synthesizes statistics from basic aggregates and reuses these basic aggregates. In the

presence of workloads exhibiting high locality and repetition, this synthesis significantly

reduces data movement.

3.1.2 Novel Data Exploration Paradigms

Data Exploration has received a lot of research interest within the data systems com-

munity (Idreos et al. 2015; Wasay et al. 2015).

First, there are exploratory interfaces that steer data scientists through the data space

by providing both insights and further queries: Recent approaches discover relevant
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data objects based on relevance-feedback (Dimitriadou et al. 2014) or by performing a

variety of faceted search (Drosou and Pitoura 2013); Query recommendation systems

help data scientists ask relevant questions based on the data set and their past interests

(Yu et al. 2010; Abouzied et al. 2012; Shen et al. 2014).

Second, there is research to enable visual analytics that reduce the cognitive e↵ort

of data exploration by augmenting data systems with visual and gestural interfaces:

Various approaches enable data scientists to visually browse data sets (Stonebraker and

Kalash 1982; Stolte et al. 2002; Wu et al. 2014); Recommendation systems automatically

select an appropriate visualization given a data set (Key et al. 2012); DbTouch (Liarou

and Idreos 2014) and GestureDB (Nandi 2013) develop database kernels and languages

that fingertips can control; Visualization languages enable declarative definition of data

visualizations (Hanrahan 2006).

Finally, approximate query processing provides estimated answers to exploratory queries

in orders of magnitude less time by touching a fraction of base data. There are also

proposals to use samples of the data set to answer queries while satisfying a user-defined

accuracy (Gibbons et al. 1998; Sidirourgos et al. 2011; Agarwal et al. 2013).

Data Canopy and Novel Data Exploration Paradigms. Data Canopy as a frame-

work for exploratory statistical analysis is complementary to all e↵orts above. None of

the works described above are about making the process of computing statistics more

interactive. Data Canopy can help make any process that contains iterative computa-

tion of statistics more interactive. Similarly, recommendation systems can use various

descriptive and dependence statistics for faster and more informed recommendations.

Data Canopy can also benefit from many of these research directions in the general field

of data exploration. For instance, Data Canopy can use sampling and approximation

techniques to create a smart cache with approximate guarantees.

3.1.3 Data Cubes

Data cubes, widely applied in mining data warehouses, store data aggregated across

multiple dimensions (Gray et al. 1997; Mumick et al. 1997). Operators like roll-up,

slice, dice, drill-down, and pivot allow data scientists to summarize or further resolve
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information along any particular dimension in the data cube. Various techniques to

improve data cube performance have been studied: Sampling and other approximation

techniques are used to reduce both the time required to construct the data cube and

answer queries from it (Barbara and Sullivan 1997; Li et al. 2008; Xie et al. 2016).

Some approaches only partially materialize data cubes (Dyreson 1996; Xin et al. 2003;

Feng et al. 2004), whereas others present strategies to build them adaptively (Beyer

and Ramakrishnan 1999), and in parallel settings (Chen et al. 2006). One line of

work proposes a simplified and flexible version of the data cube concept in the form of

small aggregates (Moerkotte 1998). Furthermore, recent research designs data cubes for

exploratory data analysis: Some research directions visualize aggregates stored in data

cubes (Kahng et al. 2016), others use them for ranking (Wu et al. 2008) as well as for

interactive exploration (Sarawagi and Sathe 2000).

Data Canopy vs. Data Cubes. Data cubes do not support a wide range of statistical

measures. Specifically, they have no support for multivariate statistics such as correla-

tion or covariance. Also, data cubes come with a high preprocessing and memory cost

resulting from calculating and storing aggregates grouped by multiple dimensions. In

contrast, Data Canopy is lightweight and can reuse and synthesize an extendible set of

statistics using a relatively small set of basic aggregates. Furthermore, slices obtained

from data cubes in OLAP settings can be explored using Data Canopy. Once data

scientists have developed an understanding of the data set, they can construct more

complicated OLAP structures or run more detailed analytics on features and subsets of

data that they have identified to be of interest. This approach is more e�cient compared

to building heavy OLAP structures upfront for exploratory statistical analysis.

3.1.4 Query Caching and Materialized Views

Query result caching enables database systems to reuse results of past queries to speed

up future queries (Hellerstein and Naughton 1996). Most relevant to Data Canopy

are approaches that enable reuse across di↵erent ranges by breaking down queries and

caching query results (Keller and Basu 1996; Deshpande et al. 1998). More recently, dif-

ferent approaches prefetch both data and query results to accelerate the process of data

exploration. Forecache breaks the data down into regions called tiles and prefetches

37



them based on a data scientist’s exploration signature (Battle et al. 2016). Similar

caching and prefetching strategies have also been proposed for the process of data visu-

alization (Liu et al. 2013).

All relational databases, such as MonetDB and Postgres, provide support for storing

results of previously executed queries to speed up future queries in the form of mate-

rialized views (Chirkova and Yang 2011). Recent research explore various methods to

figure out what materialized views are selected: There are proposals to use stochastic

optimization as well as evolutional algorithms to decide on what views to materialize

automatically (Kumar and Kumar 2018; Gosain and Sachdeva 2019; Sohrabi and Az-

gomi 2019). In addition to this, there is research on how to e�ciently maintain and

store the metadata resulting from materialized views, including incremental computa-

tion, proper partitioning in a distributed setting, and extending to key-value stores (Du

et al. 2017; Ahmed et al. 2020; Adler 2020). Finally, there is a recent proposal to replace

materialized views with learned models (Zou 2021).

Data Canopy vs. Query Caching. Data Canopy draws inspiration from these ap-

proaches and takes a step further: In addition to decomposing ranges, Data Canopy

decomposes statistical measures into a set of basic aggregates that can be reused be-

tween them. As such, Data Canopy can synthesize descriptive and dependence statistics

directly from this library of basic aggregates. Additionally, Data Canopy advances this

research direction by providing a smart cache framework that can compute and maintain

a library of basic aggregates that can be used as building blocks for various statistical

measures and machine learning algorithms.

Data Canopy and Materialized Views. It is possible to use materialized views to

implement Data Canopy in relational database systems. In particular, we can store basic

aggregates in the form of materialized views, i.e., aggregates such as COUNT, SUM,

etc., over the base data. To fully support Data Canopy in relational database systems

through materialized views, we will need to implement: (i) a function that intercepts

user queries and decomposes statistics into corresponding basic aggregates and maps

them to materialized views, (ii) a function that executes the creation of materialized

views that we have not yet created, (iii) a meta-data table that stores what materialized

views we have already created, and (iv) a function that utilizes information from the
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meta-data table to synthesize results (from existing materialized views) instead of going

back repeatedly to the base data. We can further optimize the meta-data table to take

the form of segment trees, i.e., the range composable data structures that Data Canopy

uses to store and retrieve basic aggregates in logarithmic time.

Another method to incorporate Data Canopy into relational database systems through

materialized views would be to reimplement materialized views so that they store sta-

tistical queries in the form of basic aggregates, i.e., instead of storing a single number

corresponding to a statistic on the data set, the corresponding basic aggregates are

stored and maintained. Overall, Data Canopy brings an opportunity to reuse work

across di↵erent materialized views to relational database systems.

3.1.5 Incremental Stream Processing

Similarly, in streaming scenarios, incremental query processing decomposes data streams

into smaller chunks and runs queries on these chunks: Window-based approaches par-

tition data and queries such that future windows can make use of past computation

(Chandramouli et al. 2014; Chandrasekaran et al. 2003; Ghanem et al. 2007; Liarou

et al. 2013). Specific approaches present strategies to incrementally monitor time-series

data (Zhu and Shasha 2002) and update materialized views (Gri�n and Libkin 1995).

Data Canopy and Stream Processing. Data Canopy is inspired by these approaches

and is readily applicable in streaming settings as it can be constructed in a single pass

over the data set. When processing massive streams with limited memory, Data Canopy

can function as a synopsis for answering a configurable set of statistical queries for

exploratory statistical analysis. This synopsis is constructed and updated incrementally.

3.2 Understanding Deep Learning Model Design

Model design is the next stage of data science and machine learning pipelines. Re-

searchers have extensively studied deep learning model design from various angles. Re-

cent work conducts large-scale experiments to derive guidelines to enable better model

design. In the absence of a robust theoretical understanding of the design space, model
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designers can use these guidelines to bootstrap their design process. Here, we review

research directions connected to Deep Collider, our framework that enables a principled

and holistic understanding of deep learning ensembles’ model design space. We position

Deep Collider against existing empirical research on designing single network models,

ensembles of models, and the design space between these two alternatives.

3.2.1 Single Network Design Space

Past empirical studies have progressively disentangled the contribution of three design

choices – depth, width, and convolution operators – to the accuracy of convolutional

networks (Ba and Caruana 2014; Eigen et al. 2013; Novak et al. 2018; Urban et al. 2016;

Zhao et al. 2018). The methodology is to synthesize neural network architectures that

can isolate the e↵ect of these design choices and, then, conduct large-scale experiments

over various types of architectures, data sets, and hyperparameter configurations. This

methodology has lead to several insights on how to design single neural network models:

Researchers have shown that depth is crucial as it increases non-linearity in the network

(Ba and Caruana 2014). Similarly, research establishes that the convolution operator is

essential to achieving good generalization accuracy (Urban et al. 2016). The number of

filters per layer, on the other hand, is shown to be of little consequence as long as it is

above a threshold (Eigen et al. 2013).

Single Network Design Space and Deep Collider. Our study pushes this line of

research forward in two significant ways: First, we consider the dimension of ensembling

and compare it with a single deep network under a parameter budget. This analysis

provides model designers with a way to reason about using an ensemble of deep neural

networks in their pipeline. Second, in addition to the metric of generalization accuracy,

we also include training time, inference time, and memory usage. These metrics are of

increasing importance as deep learning models are trained and deployed in heterogenous

settings with varying amounts of computational resources.
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3.2.2 Ensemble Design Space

Closely related are recent studies that compare the generalization accuracy of ensembles

of neural networks with single networks (Russakovsky et al. 2015; Lee et al. 2015a; Ju

et al. 2017). These studies, however, compare the generalization accuracy of single deep

networks with ensembles, where each network in the ensemble has the same size as the

single deep network, i.e., the number of parameters in the ensemble are significantly

higher as compared to the single network. For instance, one such study compares an

ensemble of four ResNets-110 with a single base model (Ju et al. 2017). The consensus

from these studies is to use ensembles when the goal is to achieve high accuracy without

much regard to training cost, inference time, and memory usage, e.g., for competitions

such as COCO and ImageNet.

There are recent studies that make this comparison between ensembles and single net-

work models under a parameter budget. The major conclusion is that beyond a specific

budget, ensembles can provide better accuracy than single networks (Chirkova et al.

2020; Kondratyuk et al. 2020). This work, however, considers only the metric of gen-

eralization accuracy and explores a minimal design space – two di↵erent classes of

convolutional architectures with a single depth.

Ensemble Design Space and Deep Collider. Our study, in contrast, compares

single networks to ensembles under a fixed parameter budget, which is crucial for a fair

comparison as the training and deployment cost depends on the number of parameters.

Then, we investigate how this apples-to-apples comparison evolves as we isolate and vary

the number of networks, the depth per network, and the number of filters per network

in the ensemble. As such, our work significantly extends the existing line of inquiry,

not just answering the question of how a single network compares with a K-network

ensemble (with K times as many parameters), but also addressing whether an ensemble

with the same number of total parameters as a single model can be better and when.

Compared with recent studies that make this comparison under a parameter budget,

Deep Collider brings a distinctive advantage: We conduct this analysis while considering

a holistic set of metrics that include resource-related metrics such as training time,

inference cost, and memory usage. All these metrics are critical for practical applications
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(Sze et al. 2017a). Furthermore, to provide reliable guidance to a model designer,

a robust assessment must consider a wide range of architectures and model sizes with

various depth and width configurations. This consideration is critical, primarily because

varying just the width of convolutional networks in isolation, as done by recent studies

(Chirkova et al. 2020; Kondratyuk et al. 2020), is known to be far less e↵ective to

improve accuracy (Eigen et al. 2013; Ba and Caruana 2014).

3.2.3 Theoretical Frameworks

Researchers are gradually developing theoretical frameworks to understand and explain

various deep learning models (Arora et al. 2018; Eldan and Shamir 2015; Lu et al. 2017;

Mhaskar et al. 2016; Telgarsky 2016). Theoretical frameworks in deep learning are

motivated by the need to explain and generalize empirical observations. For instance,

after empirical research established that depth is vital to the generalization accuracy of

neural networks, a theoretical framework was recently developed to explain the power

of depth (Eigen et al. 2013; Eldan and Shamir 2015).

Theoretical Frameworks and Deep Collider. Our study uncovers various observa-

tions about the behavior of training a given parameter budget in a single deep network

and an ensemble of multiple networks. It builds the basis for enabling future theoretical

frameworks to capture the relationship between ensembles and deep networks.

3.3 Efficient Deep Learning

As deep learning pipelines become more and more widespread, an ecosystem of research

has emerged to improve their e�ciency targeting the training of individual neural net-

works. Various algorithmic and system techniques target fundamental bottlenecks in

the training process such as gradient descent and matrix operations (Niu et al. 2011;

Brown et al. 2016; Li et al. 2019b,a): Various research directions improve parallelism by

introducing asynchrony in updating weights during backpropagation. Other research

directions propose adaptively tuning training hyperparameters (Bottou et al. 2016). In

addition to these, systems researchers develop techniques to reduce data movement and
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memory overhead. Approaches include using low-precision to reduce the amount of

data touched (De Sa and Feldman) and e�cient encoding of activations during training

(Jain et al. 2018). Finally, specialized hardware is being developed both in industry

and research labs to improve performance, parallelism, and energy consumption of the

training process (De Sa and Feldman; Prabhakar et al. 2016; Wang et al. 2020).

MotherNets vs. E�cient Deep Network Training. All techniques to improve

upon training e�ciency of individual neural networks are orthogonal to MotherNets

and in fact directly compatible. This is because MotherNets does not make any changes

to the core components of the training process of each individual network i.e., forward

pass and back propagation. In our experiments, we do utilize some of the widely applied

training optimizations such as batch-normalization and early-stopping. The advantage

that MotherNets bring on top of these approaches is that we can now reduce the total

number of epochs that are required to train an ensemble. This is because a MotherNet

will train for the structural similarity present in the ensemble once.

3.4 Fast Ensemble Training and Deployment

In addition to methods to improve general training of deep neural networks, techniques

have also been introduced to accelerate neural network ensemble training. Fast ensemble

training techniques fall under three di↵erent categories: (i) Techniques that generate

ensembles by training a single network, (ii) Techniques that implicitly or explicitly share

parameters between training of various ensemble networks, and (iii) Techniques that use

knowledge distillation to bootstrap the ensemble training process.

3.4.1 Generating Ensembles From Single Networks

The first class of techniques we discuss generates a target neural network ensemble by

training just a single neural network instead of training every network in the ensemble.

Overall, these approaches can train an ensemble in an amount of time comparable

to the time it takes to train a single network model. However, this improvement in

training time comes at the cost of reduced accuracy compared to an approach that trains
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every network in the ensemble separately. This class of techniques includes Snapshot

Ensembles and Fast Geometric Ensembles.

Snapshot Ensembles. Snapshot Ensembles train a single network and use its param-

eters at k di↵erent points of the training process to instantiate k networks that will

form the target ensemble (Huang et al. 2017a). Snapshot Ensembles vary the single

network’s learning rate cyclically, forcing it to visit several local minima. In particular,

Snapshot Ensembles use cyclical cosine annealing to vary the learning rate: Every cycle

starts with a large learning rate that is annealed to a lower learning rate. The large

learning rate dislodges the neural network model from its current local minima, whereas

the lower learning rate enables it to visit a well-behaved new local minima. At every lo-

cal minima, Snapshot Ensembles save a copy of the single network’s parameters. These

neural network copies function as di↵erent members of the generated ensemble.

Fast Geometric Ensembles. Fast Geometric Ensembles, closely related to Snapshot

Ensembles, is another approach to generate ensembles from the learning trajectory of a

single model (Garipov et al. 2018). Fast Geometric Ensembles also train a single neural

network architecture and saves the network’s parameters at various training trajectory

checkpoints. Instead of using cosine annealing, Fast Geometric Ensembles use a cyclical

geometric learning rate to explore various local minima in the neural network’s loss

surface, saving a copy of the network parameters at every minima.

MotherNets vs. Fast Ensemble Generation. We draw motivation from this line

of work; however, in contrast to these approaches that generate ensembles where mem-

bers have a monolithic architecture, MotherNets accelerate training of large ensembles

with diverse neural network architectures enabling structural diversity. Furthermore,

these approaches can all be used in conjunction with MotherNets to generate additional

ensembles from di↵erent neural network architectures.

3.4.2 Training Ensembles by Parameter sharing

We discuss the next set of techniques to reduce ensemble training and deployment time

by sharing parameters between di↵erent networks in the ensemble. This sharing can
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happen explicitly, as is the case with TreeNets, or, in the case of Dropout and Pseudo-

ensembles, this sharing can happen implicitly.

Explicit Sharing: TreeNets. Given a neural network ensemble, TreeNets trains

the parameters of the first few (two to four) layers in a shared manner (Lee et al.

2015b). Specifically, TreeNets combine the initial few layers of various networks in the

given ensemble to create a network that branches into k sub-networks (where k is the

number of networks in the ensemble) after the first few shared layers. E↵ectively every

sub-network functions as a separate member of the target ensemble. This network

with multiple branches, called the TreeNet, is then trained in an end-to-end manner

minimizing a composite loss function that consists of (i) the canonical empirical loss

and (ii) a regularization term that induces diversity between di↵erent sub-networks.

MotherNets vs. TreeNets. MotherNets is di↵erent from TreeNets in two regards.

First, MotherNets does not restrict the size and architecture of models in the ensemble,

i.e., there is no requirement for initial layers to have the same structure (as is the

case with TreeNets). In other words, MotherNets can train an ensemble with arbitrary

size and containing networks with diverse architectures. Second, MotherNets train the

ensemble in two phases that explicitly first lower bias and then create diversity.

Implicit Sharing. As opposed to the explicit sharing of parameters in the initial layers

of TreeNets, various existing approaches create many networks with shared weights dur-

ing training and implicitly ensemble them during inference. These techniques proceed

by zeroing out a random subset – individual nodes, connections, and complete layers

– of a network during every round of mini-batch training. During inference, these ap-

proaches scale every part of the trained network by its probability of surviving during

training (Wan et al. 2013; Srivastava et al. 2014; Singh et al. 2016; Huang et al. 2016).

MotherNets vs. Pseudo-Ensembles. MotherNets capture the structural similarity

in an ensemble, where members have di↵erent and explicitly defined neural network

architectures in the form of MotherNets. After training for this similarity, we transfer

well-trained parameters to all ensemble networks that are further trained. Overall,

this enables us to combine well-known architectures within an ensemble e↵ectively.
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Fast High Diverse Large
training accuracy architecture ensemble size

Full data ⇥ X X ⇥
Bagging ⇠ ⇥ X ⇥
Knowledge Distillation ⇠ ⇥ X ⇥
TreeNets ⇠ ⇠ ⇥ ⇥
Snapshot Ensembles X X ⇥ ⇥
Fast Geometric Ensembles X X ⇥ ⇥
MotherNets X X X X

Table 3.1: Existing approaches to train ensembles of deep neural networks are limited
in speed, accuracy, diversity, and size. MotherNets overcomes all these shortcomings.

Furthermore, implicit ensemble techniques, for instance, Dropout and Swapout, can be

used as optimizations to further improve upon the generalization accuracy of individual

networks trained through MotherNets (Srivastava et al. 2014; Singh et al. 2016).

3.4.3 Training Ensembles by Knowledge Distillation

Knowledge Distillation provides a middle ground between separate training and en-

semble generation approaches (Hinton et al. 2015). Knowledge Distillation trains an

ensemble in two steps: First, it trains a large generalist network and then distills its

knowledge to an ensemble of small specialist networks that may have di↵erent archi-

tectures (by training them to mimic the probabilities produced by the larger network)

(Hinton et al. 2015; Li and Hoiem 2017).

MotherNets vs. Knowledge Distillation. The major drawback of using Knowledge

Distillation to train ensembles is that distilling knowledge still takes around 70 percent

of the time needed to train every neural network from scratch. Even then, the ensemble

networks are still closely tied to the same large network that they are distilled from.

The result is significantly lower accuracy and diversity when compared to ensembles

where every network is trained individually (Hinton et al. 2015; Li and Hoiem 2017).

MotherNets, on the other hand, avoids this training cost by hatching the ensemble

networks through rapid function-preserving transformations. Once the networks have

been hatched, they are trained independently, allowing the hatched networks to explore
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a di↵erent solution space than that of their MotherNet. Overall, this results in better

accuracy and faster training as compared to training via Knowledge Distillation.

Table 3.1 provides an overall comparison between MotherNets and all other fast ensem-

ble training approaches. All other approaches lack in one or more of the three dimensions

of speed, accuracy, diversity, and scalability. MotherNets, on the other hand, is the first

general purpose fast ensemble training approach that extends to ensembles of diverse

neural network architectures while providing high accuracy and low training time. As

such it enables training of large ensembles consisting of multiple single neural networks.
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4
Data Canopy: Accelerating Exploratory Data

Analysis

We now present Data Canopy in detail. Data Canopy enables data scientists to perform

exploratory statistical analysis without having to repeatedly scan the entire base data.

The main idea is that Data Canopy breaks statistics down to basic aggregates. It

caches and manages a library of basic aggregates so that incoming queries may use

it to synthesize di↵erent kinds of statistics. Data Canopy can compute the library of

basic aggregates in a single o✏ine pass over the data. For dynamic data exploration

scenarios with little idle time, Data Canopy incrementally computes the library of basic

aggregates during query processing.

4.1 Example: Query Processing in Data Canopy

Before we discuss the design of Data Canopy, we motivate and provide the core intuition

with the help of an example. Consider the hourly temperature measurements collected

by the National Centers for Environmental Information (NCEI) (nce 2016). On this

data set we build an instance of Data Canopy that is configured to work with three
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Figure 4.1: An example of queries that can reuse computation and data access through
Data Canopy.

univariate statistics: mean, variance, and standard deviation. Figure 4.1 shows how

Data Canopy processes a series of queries over this data set without having to always

check the base data.

Query 1: The data scientist requests mean temperatures for each day. Data Canopy

is initially empty i.e., there are no basic aggregates to utilize. For this query Data

Canopy has to access base data and compute the daily mean temperatures (using 24

observations for each calculation). Data Canopy takes this opportunity to compute

and store two types of basic aggregates: (1) basic aggregates that are immediately

needed to synthesize statistics for the current query, and (2) basic aggregates that are

not immediately needed, but can be computed from accessed data and then reused by

other statistics. These basic aggregates are always maintained at a fixed granularity of

a chunk. For ease of presentation, the chunk size is set to 12 in this example, i.e., one

chunk corresponds to twelve hours (in practice Data Canopy autotunes the chunk size

as we will discuss later on). The basic aggregates resulting from this query are shown

under Query 1 in Figure 4.1. For every chunk of size 12, Data Canopy stores the set of

sums (ts), to be used for the current query, and the set of sums of squares (tss), that

may be used by future queries (for example for standard deviation and variance).

Query 2: The data scientist requests mean temperatures for each week. This time the

data scientist asks for the same statistic as requested in Query 1 but at a di↵erent

granularity (weekly instead of daily). As shown under Query 2 in Figure 4.1, there is no

need to access the base data again. Data Canopy already contains ts, the sums of hourly

temperatures for every 12 hours. It sums up 14 consecutive values of ts to synthesize

the result for each week.
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Query 3: The data scientist requests variances in temperature for every two weeks. This

time the data scientist asks for both a di↵erent statistical measure and at a di↵erent

granularity (biweekly instead of weekly or daily). As shown under Query 3 in Figure

4.1, Data Canopy synthesizes statistics from basic aggregates, again, without accessing

the base data. The variance of a set of observations x is given by Equation 4.1. Data

Canopy thus uses ts and tss to synthesize the result set r3 for this query.

vx =
⇣ 1

N

NX

i=1

x2
i

⌘
�
⇣ 1

N

NX

i=1

xi

⌘2

Other Queries. Similar to the above scenarios, once Data Canopy stores the set of sums

ts for every 12 hours, and the set of sums of squares tss for every 12 hours, it can reuse

these basic aggregates in four di↵erent types of query scenarios:

i. Across di↵erent data ranges: daily mean of the first three days, daily mean of the

last four days, etc.

ii. Across di↵erent data granularities: weekly mean, biweekly mean, etc.

iii. Across di↵erent statistical measures: daily standard deviation, daily variance, etc.

iv. Across any combinations of i, ii, and iii: weekly standard deviation, monthly vari-

ance, weekly range etc.

4.2 Design Concepts

We now describe the core design concepts in Data Canopy that enable the aforemen-

tioned degree of reuse.

Data and Query Range. We will use the concepts of data and query range throughout

our discussion. We define a data range as a set of consecutive data items from a column

or a set of columns. A query range is the data range over which a query requests

statistical measures.
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Table 4.1: Data Canopy synthesizes statistics from a library of basic aggregates.

Basic Aggregates. Data Canopy breaks statistical measures into basic primitives. We

call those primitives basic aggregates. We define a basic aggregate over a data range as a

value that is obtained by first performing a transformation ⌧ on every data item in that

data range and then combining the results using an aggregation function f . Formally,

for a given data range X, (with elements xi) a basic aggregate can be represented as

f({⌧(xi)}). In our running example, sum of squares tss can be represented as f({⌧(xi)})

=
P

i x
2
i , where ⌧(xi) = x2

i and f is the sum function.

The transformation ⌧ can be any operation on an individual data item. However, the

aggregation function f has to be commutative and associative i.e., we should be able

to break down and combine basic aggregates between sub-ranges (partitions of the data

range). Formally, for any partition {X1, X2, . . . Xn} of a data range X, the following

should hold:

f(X) = f({f(X1), f(X2) . . . f(Xn)}) (4.1)

For instance, this property is satisfied by min, max, count, sum, and product functions

on any given data range, whereas the median function does not satisfy this property.
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Decomposing Statistics. Data Canopy defines a statistic S over a data range X as

a function F of di↵erent basic aggregates:

S(X) = F ({f(⌧({xi})})

Figure 4.3 shows how statistic S (with function F) is mapped to two basic aggregates.

The rationale behind representing statistics as a function of basic aggregates is twofold:

First, various statistical measures share – and can reuse – basic aggregates. For instance

mean, variance, and standard deviation all require the basic aggregate of sum over the

target data. Second, a given basic aggregate over a certain data range (as a result of the

property in Equation 4.1) can be further decomposed into sub-ranges. These sub-ranges

can be combined together to synthesize that basic aggregate over any data range that

contains those sub-ranges.

Table 4.1 shows how Data Canopy breaks down a set of widely used descriptive and

dependence statistics into five basic aggregates. E↵ectively, Data Canopy is a smart

cache. An alternative approach could be that we cache the result values of each indi-

vidual statistic. However, we then lose the ability to reuse computation and data access

between di↵erent statistics, despite clear overlaps. For instance, if instead of caching

each of the basic aggregates corresponding to correlation, we cached just the final value,

we will not be able to use that value to synthesize any of the other statistical measures

mentioned in Table 4.1. Instead, we would have to access the data set again to compute

the individual statistics.

In addition to the examples in Table 4.1, geometric mean (⌧(x) = x, f(X) =
Q

i xi),

harmonic mean (⌧(x) = 1
x , f(X) =

P
i xi) and other descriptive and dependence statis-

tics can be synthesized from basic aggregates. Over 90 percent of statistics supported by

NumPy and SciPy (num 2013), and over 75 percent of statistics supported by Wolfram

(Wol 2017) can be expressed in the aforementioned form i.e., they can be decomposed

and expressed in terms of ⌧ , f , and F .

Chunks. Data Canopy maintains basic aggregates at the granularity of a chunk –

a logical partition of data that comprises of consecutive values from a data column.

For every chunk, Data Canopy maintains a single value per basic aggregate type. In
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our example of hourly temperature data, a chunk size of 12 implies that for every

statistical measure that Data Canopy computes, it caches each of the resulting basic

aggregates over every 12 data values. This concept of chunk is essential to how Data

Canopy enables reuse – reducing repeated data access – between di↵erent queries during

exploratory statistical analysis.

As a result of chunking, queries of any data range larger than the chunk size can be

synthesized directly from basic aggregates. Even in cases when the query range does not

exactly align with the chunks, Data Canopy only needs to scan at most the two chunks

at the edges of the requested query range. In a similar fashion, queries having partial

range overlaps with previously computed chunks can also reuse basic aggregates. Map-

ping this concept to our running example, weekly and yearly variances in temperature

can be synthesized from daily aggregates. Also, a query that requests the mean tem-

perature over the last three weeks of a month, can reuse overlapping basic aggregates

corresponding to the first two weeks.

Overall. Data Canopy is able to reuse previously computed basic aggregates to synthe-

size a wide set of statistics. As a concrete example, by storing just two basic aggregates

of sum and sum of squares over five chunks in ten columns (a total of 100 values), Data

Canopy can reuse this information across queries that target 25 possible combinations

of chunks and request for up to four statistical measures – mean, variance, root mean

square, and standard deviation – over any of these ten columns.

4.3 Data Structure

Data Canopy uses a set of segment trees to store basic aggregates. Segment trees support

e�cient aggregate queries over a data range without the need to access individual data

items (Saxe and Bentley 1979; De Berg et al. 2000). This property is satisfied by storing,

at every parent node, an aggregate of its two children. Segment trees in Data Canopy

are implemented as binary trees. The Data Canopy catalog implemented as a hash table

stores pointers to all segment trees.

Segment trees are well-suited as a data structure for Data Canopy. This is because to
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Figure 4.3: Data Canopy decomposes
Statistics into basic aggregates to enable
various forms of reuse.

synthesize queries that request for statistics over a data range, Data Canopy only needs

aggregates over chunks that fall within that data range, and not their actual values.

Consider Query 1 in our running example. Data Canopy stores basic aggregates over 12

values (daily basic aggregates). A query that requests weekly standard deviation only

needs sum and sum of squares over 14 consecutive basic aggregates, and not their actual

values. This way, Data Canopy can synthesize statistics in time complexity which is

logarithmic in the number of chunks involved.

Data Structure Configuration. For every basic aggregate kept for every column,

Data Canopy maintains a separate segment tree. Every leaf of this segment tree stores

a basic aggregate value corresponding to a chunk. An example layout of the Data

Canopy data structure over a single column is shown in Figure 4.2. In this example,

Data Canopy holds two basic aggregates (sum and sum of squares), using two separate

segment trees, one for each basic aggregate.

By having a separate set of segment trees for every column, we ensure that the internal

nodes of each segment tree contain no surplus nodes (i.e., those that maintain aggre-

gates across columns or across statistical measures). As a result, the overall memory

requirement of Data Canopy as well as the size of the individual segment trees is mini-
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Term Description
c Number of columns
r Number of rows
h Number of chunks
s Chunk size (bytes)
vd Record size (bytes)
vst ST node size (bytes)
# Cache line size (bytes)

Table 4.2: Data Canopy terms.
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Figure 4.4: For each query, Data Canopy
traverses the optimal depth dq of the seg-
ment trees.

Options Memory Query/Update
ST per Data Canopy 2 · b · c · h� 1 O(log b · c · h)
ST per column 2 · b · c · h� c O(log b · h)
ST per statistic 2 · b · c · h� s O(log c · h)
ST per column per statistic (Data Canopy) 2 · b · c · h� b · c O(log h)

Table 4.3: Memory, access, and update cost of di↵erent configurations of segment trees
(ST) storing b basic aggregates. The configuration used by Data Canopy (bottom) has
the lowest query cost and memory usage.

mized. Also, since range queries are localized to a single column or a set of columns (for

multivariate statistics) instead of the entire data set, we only have to search through

a subset of the total segment trees, instead of one big segment tree corresponding to

the entire data set. This arrangement still allows a data scientist or application to

request for individual statistics and combine them in ways that make sense according

to the domain and the data set. A comparison of the memory requirement and query

cost of various possible configurations of segment trees is provided in Table 4.3. The

configuration used in Data Canopy has the lowest query cost and memory usage.

Flexibility. The separation of segment trees allows for maximum flexibility in dynamic

and exploratory workloads. There is no need to construct or even allocate memory for
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the entire Data Canopy in advance. Instead, Data Canopy can easily be extended, by

adding new segment trees, to cater for new columns or new basic aggregates.

Parallelism. The construction of Data Canopy can be aggressively parallelized as the

process of calculating basic aggregates and storing them is an embarrassingly parallel

one. To construct a univariate Data Canopy, the columns can be divided between the

number of available hardware threads. Similarly, when constructing a multivariate Data

Canopy, the segment trees for every column combination can be built independently.

4.4 Operation Modes

Depending on hardware properties, data size, and latency requirements, Data Canopy

can operate in one of three modes: o✏ine, online, and speculative.

O✏ine. In the o✏ine mode, Data Canopy is built in advance. This mode is useful

when users know the data and statistical measures of interest a priori and they can also

wait until Data Canopy is built before they pose their first query. The o✏ine mode

builds the library of basic aggregates fully for a set of rows, columns, and statistical

measures specified by the user.

Online. In the online mode Data Canopy populates the library of basic aggregates

incrementally online during query processing. For every incoming query, Data Canopy

generates and caches the basic aggregates needed for this query if they do not already

exist in the library. As more queries are being processed, the library of basic aggregates

becomes more and more complete and can reduce data access costs for future queries

with higher probability.

The online mode can be combined with the o✏ine mode. For example, a user may

generate any portion of the Data Canopy for any part of the data o✏ine (or generate

as much as idle time allows) and then during query processing, Data Canopy operates

in online mode to fill in the rest of the missing pieces.
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Figure 4.5: The lifecycle of a statistical query in Data Canopy.

Speculative. In the speculative mode, Data Canopy takes full advantage of moving the

data through the memory hierarchy to generate more knowledge than what is strictly

needed for the active query. Every time it scans any part of the data set to answer a

query, it builds segment trees for all univariate statistics. We show that this imposes a

modest CPU and memory overhead for the current query, and Data Canopy potentially

avoids having to rescan the data for future queries for other statistics – trading a modest

CPU and memory overhead now for I/O benefits later on. For example, when Data

Canopy answers a mean query in speculative mode, it also builds a segment tree for

sum of squares so that it is possible to later e�ciently synthesize the variance and

standard deviation.

4.5 Query Processing

We now explain how Data Canopy uses its library of basic aggregates to synthesize the

results of statistical queries. We use terms from Table 4.2.

Query. In Data Canopy, a query is defined by the set Q = {{C}, [Rs, Re), S}, where

{C} is the set of columns targeted by the query; Rs and Re define the query range

i.e., the two positions on the column set C on which a statistic is requested; and S is

the statistical measure to be computed. From our running example, Query 2 (mean
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temperature for the third week) can be represented as Qt = {Ct, [336, 504), mean}.

Figure 4.5 depicts the steps taken to process a query. The first step is to convert the

query into a plan. To achieve this, the query range is mapped to a range of chunks, and

the statistical measure is mapped to a set of basic aggregates.

Mapping Query Range to Chunks. Data Canopy first maps the query range

[Rs, Re) to a set of chunks [cs, ce], such that the whole query range is covered. This

process is depicted on the left side of Figure 4.5, where the query range (shown in black

and grey) is mapped to the corresponding chunks. Given the mapping, we can now dis-

tinguish between two parts of the query range. The first part of the query range RDC

(shown in grey) aligns perfectly with the boundaries of the existing chunks. In this case,

Data Canopy can fully use the basic aggregates of these chunks to synthesize the result.

The second part of the query range Rd (shown in black) at the two end-points of the

query range might or might not align with the existing chunks. Data Canopy has to

scan the two chunks at the end-points of the query range to compute basic aggregates

for Rd. We call this part of the query range that always requires access to base data

the residual range. When Data Canopy operates in online mode, it may be that it has

to access more than two chunks so as to populate any missing chunks in any part of the

query range, not just at the end points.

Mapping Statistic to Basic Aggregates. The next step is to map the requested

statistical measure S to the corresponding set of basic aggregates {f(⌧)} and a function

F to combine these basic aggregates. This is achieved by the StatMapper as shown in

Figure 4.5. For every statistical measure supported by Data Canopy, the StatMapper

stores a complete recipe to synthesize that statistic from basic aggregates.

The StatMapper is implemented as a hash table, where the keys are identifiers of sta-

tistical measures and each key corresponds to a recipe. The recipe is a data structure

that contains a list of basic aggregates {f({⌧})} required to synthesize the statistical

measure S as well as a pointer to a function that operates on and combines the basic

aggregates as defined by F . Overall, Data Canopy converts a query Q into a plan P ,

making the following set of mappings:
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Evaluating the Plan. The plan is passed on to the evaluation engine, where the

result is synthesized based on the current policy and state of Data Canopy (right side

of Figure 4.5).

If Data Canopy is operating in the o✏ine mode, all basic aggregates have been pre-

computed and there is no need to touch the base data except to evaluate the residual

range Rd. In this mode no new basic aggregates are added as a result of query process-

ing. In the online and the speculative mode, some of the required basic aggregates (for

some chunks) might not be computed and stored already. In such cases, Data Canopy

accesses base data to evaluate basic aggregates on those chunks, and they are stored

in Data Canopy. Finally, when all basic aggregates required for the current query are

fetched and/or materialized, they are passed to function F to generate the result.

4.5.1 Analyzing Query Cost

We formalize the cost of answering a query when both Data Canopy and data fit in

memory (we model the out-of-memory cost in §4.8). This cost is modeled in terms of
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the amount of data accessed (cache lines).

We consider a query q for a statistic S over a data range. The statistic S is defined

over k di↵erent columns, and it is composed of b total basic aggregates i.e., it accesses

b segment trees. For instance, in the case of a variance query, b = 2 (sum and sum of

squares) and k = 1 (univariate statistic), whereas for a correlation query b = 5 (sum and

sum of squares of both columns and sum of products) and k = 2 (bivariate statistic).

Let Csyn be the cost of answering query q. This cost is divided in two parts: (1) probing

b segment trees, and (2) scanning the residual ranges of k columns. We denote these

costs as Cst and Cr respectively. The total cost is:

Csyn = Cst + Cr

First, we model Cst. To answer a query q, Data Canopy traverses b segment trees. The

number of leaves in each segment tree is r·vd
s , where r is the number of rows, vd is the

record size (in bytes), and s is the chunk size (in bytes). Moreover, the cost of probing

a segment tree with n leaves is at most 2 log n cache line reads (Zheng et al.) (as a node

fits in a cache line). Hence, we can express Cst as follows:

Cst = 2 · b · log2

⇣r · vd
s

⌘
(4.2)

We now model Cr. A query on k columns has to scan at most 2k chunks i.e., at the

end points of the query range. The cost of scanning a chunk is s
# . We get the following

formula for Cr:

Cr =
2 · k · s

#
(4.3)

Using Equation 4.2 and 4.3, the total query cost becomes:

Csyn =
2 · k · s

#
+
⇣
2 · b · log2

r · vd
s

⌘
(4.4)
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For simplicity of presentation, here we do not distinguish between the cost of a cache

miss (traversing the linked segment trees) and a cache hit (scanning a sequential residual

range). We study the e↵ects of these hardware dependent parameters when we tune

and verify the chunk size in Section 4.10.7.

Synthesize or Scan. For queries with a small range, Data Canopy directly scans the

data if this results in a smaller query cost compared to traversing the segment trees and

synthesizing the answer. We describe below how this optimization decision is made.

The cost of scanning the full query range of size R, Cscan can be expressed as:

Cscan =
R · vd

#
(4.5)

Now we calculate the boundary query range size Rb, where Cscan becomes equal to

Csyn. Below Rb, answering the query by scanning the complete query range is faster

than synthesizing it from basic aggregates. Using Equation 4.4 and 4.5, we get:

Rb =
2 · k · s

vd
+

2

vd
· # · b · log2

⇣r · vd
s

⌘
(4.6)

Data Canopy answers a query with range size R from basic aggregates when R > Rb,

otherwise it answers the query by scanning the full query range. Figure 4.6 shows how

Rb (as a percentage of the number of rows r) decreases as r increases. This shows that

as the number of rows in the data set increases a greater proportion of total queries is

answered through basic aggregates. Here # = 64B, b = 5, k = 2, and vd = 4B.

4.6 Selecting the Chunk Size

We now explain how Data Canopy selects the chunk size to optimize query performance.

Optimal Chunk Size. The chunk size has opposite e↵ects on the cost of scanning the

residual range Cr and the cost of traversing segment trees Cst. Increasing the chunk

size, results in an increase of Cr as the residual range increases. On the other hand,
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increasing the chunk size decreases Cst as the size of segment trees shrinks. As a result,

Csyn is a convex function of the chunk size and has a global minimum i.e., there is an

optimal chunk size so that optimizes overall query performance. The convex behavior of

the query cost is shown in Figure 4.7 (# = 64B, b = 5, k = 2). To obtain a closed-form

expression for the optimal chunk size so, we di↵erentiate Csyn with respect to s:

so =
b · #

k · ln 2
(4.7)

The optimal chunk size so depends only on properties of the hardware (i.e., cache line

size) and the type of requested statistic (i.e., the ratio between the number of segment

trees and the columns that are scanned for the residual range). This is because the

optimal chunk size strikes a balance between the number of cache lines accessed when

scanning the base data (for the residual range) and when traversing the segment trees.

Optimal Chunk Size and Rb. Observe from Equation 4.6 that s < Rb, 8r � s. In

other words, any chunk size (including the optimal chunk size so) is always smaller than

the boundary range size Rb below which a given query is answered by scanning the

range. A corollary of this observation is that independent of the workload the chunk

size should not be below so. This is because Data Canopy will answer any query with

a smaller range size than so by directly scanning the range instead of traversing the

segment trees (because this is faster i.e., it incurs fewer cache line reads).

Selecting the Chunk Size. By default, Data Canopy sets the chunk size sDC to the

lowest value of the ratio b
k . This value is 1 (for b=k=1) and allows Data Canopy to store

just enough information (enough depth in the segment trees) to be optimal for queries

that access the least amount of segment trees (e.g., mean, max, min etc.). Hence, to

set the default chunk size, Data Canopy needs no prior knowledge of the workload.

Workload Adaptivity. To ensure optimal performance for queries with b
k > 1 (i.e.,

those that access more than one segment trees), Data Canopy makes an adaptive deci-

sion and traverses shorter paths in the segment trees. This strategy is shown visually

in Figure 4.4. Given a query q, Data Canopy analytically computes the optimal chunk

size for this query sq using Equation 4.7. Then it calculates the optimal depth of the
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segment tree for q:

dq = log2

⇣r · vd
sq

⌘

Data Canopy goes only as deep as dq in the segment trees, and then scans the residual

range (now up to a size of 2 · k · sq). This strategy ensures that each query achieves

optimal performance by minimizing the data (cache lines) it has to read.

Overall, Data Canopy builds segment trees with a chunk size that guarantees optimality

for queries that need to access a single segment tree only (i.e., dmax) and can a↵ord to

do more cache misses going all the way to the leaves of the segment tree. For queries

that will access more segment trees, though, (and thus they will incur more cache

misses) Data Canopy adaptively gets out of the segment tree traversal sooner (i.e., at

dq) reverting on sequentially scanning more data chunks and thus achieving an optimal

balance tailored to each individual query. This optimization comes from the fact that

segment trees are binary trees and every node we read when traversing the tree leads to

a cache miss. As such there is a point when reading a cache line full of useful data (when

scanning data chunks) becomes better than traversing a binary tree. Other directions,

one may explore here, as alternatives to the optimization we propose, is the study of a

more cache conscious layout of the segment trees where every cache miss would bring a

cache line full of useful tree data.

4.7 Memory Footprint

Data Canopy’s memory requirement depends on: (i) the types of statistical measure it

maintains, (ii) the chunk size, and (iii) the data size. For a given set of statistics S,

we define the Data Canopy footprint F (S) as the number of segment trees per column

required to synthesize S on the entire data set. The size (in bytes) of a full segment tree

with the optimal chunk size so and node size vst is given by vst · (2 · r·vd
so
� 1). Hence,

the total size of a complete Data Canopy (in bytes) on c columns is:

|DC(S)| = c · vst · (2 · r · vd
s
� 1) · F (S) (4.8)
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We define the Data Canopy footprint with respect to both a single statistic and a set

of statistics, as the number of basic aggregates per column required to synthesize all

instances of that statistic or set of statistics from Data Canopy. Below we elaborate

how it applies to univariate and bivariate statistics.

Univariate Statistics. The Data Canopy footprint of univariate statistics is inde-

pendent of the number of columns c. This is because to compute univariate statistics

on a column, we require no information from other columns. For example, the Data

Canopy footprint of mean is 1 because we need to keep only the sum for every column

to synthesize the mean. Similarly the Data Canopy footprint of variance and standard

deviation is 2.

Bivariate Statistics. The Data Canopy footprint of bivariate statistics depends on the

number of columns c as they require information from pairs of columns. For example, to

synthesize all pairwise correlations, we need sums and sums of squares of all c columns

as well as c·(c�1)
2 sums of pairwise products i.e., a total of 2+(c�1)

2 basic aggregates are

stored for every column.

Set of Statistics. The Data Canopy footprint is similarly defined for a set of statistics.

For example, the Data Canopy footprint of mean and variance is 2 whereas the Canopy

footprint of standard deviation, mean, and correlation is 2+(c�1)
2 .

Using terms from Table 4.2, we define the size of Data Canopy storing a set of statistics

S as follows:

|DC(S)| = c · (2 · h� 1) · F (S) · vst

Composabilty. Here we define the concept of composability, which can be used to char-

acterize the reusability of the basic aggregates cached by Data Canopy. Composability

is the extent to which basic aggregates are shared by the set of statistics S supported by

Data Canopy. Formally, it is the ratio between the number of basic aggregates shared

by all members of S and the total number of basic aggregates required to synthesize S.
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Let B(S) be the set of basic aggregates required to synthesize a statistic S, then the

composability of S, given by C (S) is:

C (S) =

Ti=|S|
i=1 B(Si)

Si=|S|
i=1 B(Si)

For instance, the composability of S = {mean, variance, standard deviation} is one-half.

C (S) is zero when none of the statistics share any of the basic aggregates. On the other

hand, C (S) is one when the same set of basic aggregates can be used to compute every

member of S. A highly composable set of statistics will result in better reusability and

lower memory requirement.

4.8 Out-of-Memory Processing

Now we introduce a three-phase eviction policy that maintains good performance guar-

antees as the data size and the size of Data Canopy exceeds main memory capacity. The

high level idea is that Data Canopy maintains a cache of data pages, which are evicted

when there is memory pressure and reloaded if needed. Similarly, parts of Data Canopy

are also evicted and reloaded if needed. This policy captures both the case when data

does not fit in memory and the case when Data Canopy does not fit in memory.

Phase 1. During the first phase, as main memory runs out, Data Canopy shrinks

horizontally by removing one layer of leaf nodes from every segment tree in a round-

robin fashion. This is equivalent to doubling the chunk size. Both data and Data

Canopy still fit in main memory, and so the system maintains good performance (i.e.,

query processing is in the order of hundreds of microseconds). If there is more memory

pressure and the chunk size exceeds the size of a page (4KB to 64KB), Data Canopy

stops shrinking and moves on to Phase 2.

Phase 2. During Phase 2, Data Canopy maintains data pages in memory only as a

cache of frequently accessed data. It evicts data pages from main memory using an

LRU policy. Query cost remains low since each query has to touch at most 2k pages

to scan the residual range, where k is the number of columns referenced by a query.
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Figure 4.8: Data Canopy adaptively handles new data (rows).

For example, a correlation query needs to access at most two columns and thus touches

at most four pages, which takes approximately 40 ms on modern disks. Moreover, for

frequently accessed chunks, the cache prevents a query from going to disk.

Phase 3. In the extreme case, when none of the data can fit in memory, we reach the

scenario, where parts of Data Canopy also need to be evicted. In this case, Data Canopy

evicts whole segment trees using an LRU policy. These segment trees are spilled to disk

and reloaded if needed. To make it easy when reloading segment trees from disk that

may refer to potentially dirty chunks (updated), we keep an in-memory bit vector for

each segment tree, which marks dirty chunks (1 bit per chunk). If memory pressure

continues, bit vectors are also dropped along with the on-disk segment trees.

O✏ine Mode and Memory Pressure. When Data Canopy is set to o✏ine mode

it is given a set of data (row and columns) and a set of statistics to be precomputed.

Data Canopy first computes the overall memory footprint that the resulting structure

will have and if it exceeds available memory, Data Canopy has to operate immediately

in Phase 3. Before doing so, Data Canopy first gives the user a warning and option if

they want to reduce the amount of data or statistics to be included so that it fits in the

memory budget. Otherwise, Data Canopy proceeds in Phase 3.
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4.9 Handling Updates

We now discuss how Data Canopy handles insertions, updates, and deletes. Data

Canopy handles updates incrementally to avoid overheads during online exploration.

Inserting Rows. When new rows are inserted and the new total number of rows

exceeds the existing capacity of Data Canopy, then Data Canopy needs to expand.

It does so by doubling the capacity of its segment trees without doubling the size

immediately. This means that a root is added in each segment tree with the previous

root as a left child and a new empty right child (and subtree). This results in e↵ectively

no immediate memory overhead. Data Canopy then populates the new right sub-tree

adaptively only when and if the new rows are queried (Figure 4.8).

Inserting Columns. When a new columns is added, Data Canopy needs to simply

add this column in its catalog. Given that columns are treated independently there

is no further complexity resulting from the addition of a new column. As data in the

new column is queried, Data Canopy allocates segment trees for this column and then

populates them incrementally.

Updating Rows. When a record x at row r of column c is updated, Data Canopy

first retrieves the old value xold of x and uses it along with the new value xnew of x to

update all segment trees that involve column c. For each segment tree, Data Canopy

looks up the basic aggregate yold for the chunk where row r resides, and it updates it

as follows1: ynew = yold � ⌧(xold) + ⌧(xnew).

Assuming a univariate segment trees on column c, the cost of updating them is a·log2
r·vd
s

(where log2
r·vd
s is the depth of the segment trees). Moreover, assuming b bivariate

segment trees on column c, the cost of updating them is b · log2
r·vd
s + b. The additive b

term derives from the fact we need to fetch one value from another column per segment

1More generally, we update y using the aggregation function F and its inverse F�1 as follows:
ynew = f

�
f�1 (⌧(xold), yold) , ⌧(xnew)

�
.

67



tree to adjust the sum of products. The overall update cost Cupdate is:

Cupdate = 2 · (a + b) · log2
r · vd

s
+ b (4.9)

Deleting Rows. Data Canopy deletes rows in-place using a standard technique for

fixed-size slotted pages, where the granularity of a page is the chunk. Each chunk has

a counter that keeps track of the number of valid rows in a chunk, and the valid rows

are placed first in the chunk. When a row is deleted, we replace each deleted value xold

with the last valid value in the chunk, and we decrement the counter.

To update the segment trees, we probe all of them for the basic aggregate for the chunk

of the deleted row and update it as follows2: ynew = yold � ⌧(xold). In addition, we

maintain one invalidity segment tree per table that keeps track of the number of invalid

entries per chunk for subsequent statistical queries, as we can no longer assume that each

chunk is full. The cost model is the same as for updates with one more additive term

of 2 · log2
r·vd
s for updating the invalidity segment tree: Cdelete = Cupdate + 2 · log2

r·vd
s .

4.10 Experimental Analysis

We now demonstrate that Data Canopy accelerates statistical analysis and machine

learning algorithms.

Experimental Setup. All experiments are conducted on a server with an Intel Xeon

CPU E7-4820 processor, running at 2 GHz with 16 MB L3 cache and 1 TB of main

memory. This server machine runs Debian “Jessie” with kernel 3.16.7 and is configured

with a hard disk of 300GB operating at 15KRPM. We implemented Data Canopy from

scratch in C++ compiled with gcc version 4.9.2 at optimization level 3. The current

prototype supports three univariate statistics: mean, variance, and standard deviation;

and two bivariate statistics: correlation and covariance.

We compare the performance of Data Canopy with two widely used statistical packages:

NumPy (num 2013) in Python and Modeltools (Foundation 2016) in R. Also, we show

2More generally, we apply: ynew = f�1 (⌧(xold), yold).
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Workload Column Dist. Range Size Repetition
U Uniform Unif(5,10) % low
Z Zipfian Unif(5,10) % moderate
U+ Uniform Zoom-in high
Z+ Zipfian Zoom-in very high

Table 4.4: Evaluation workloads.

how Data Canopy compares to MonetDB (Boncz et al. 1999). In addition to these

systems, we compare Data Canopy against our own statistical system StatSys. StatSys

shares the code base with Data Canopy, but it has none of the design concepts that

allow Data Canopy to synthesize statistics from basic aggregates; instead, it needs to

fully compute each query from scratch.

Benchmark. There are no standard benchmarks for exploratory statistical analysis. To

test Data Canopy we develop a benchmark that captures a wide range of core scenarios

and stress tests Data Canopy’s capability to reuse data access and computation.

We generate exploratory statistical analysis pipelines as sequenc- es of queries. Each

query requests to compute a statistical measure on a range over a data column (or a

set of data columns for multivariate statistics). The benchmark consists of four distinct

workloads generated by varying two parameters: the probability with which queries

are distributed over columns and the distribution of query range sizes. These work-

loads are summarized in Table 4.4. We investigate two di↵erent distributions of queries

over columns: column-uniform (U and U+) and column-zipfian (Z and Z+). In the

column-uniform workloads, queries are equally divided between all columns. In the

column-zipfian workloads, queries are divided over columns conforming to the zipfian

distribution (s=1) i.e., the column with the highest number of queries has twice as much

queries in the workload as compared to the column with the second highest.

Similarly, we investigate two di↵erent distributions for the query range sizes. In the

range-uniform workloads (U , Z), the range sizes are uniformly distributed between 5

and 10 % of the total column size. The range-zoom-in workloads (U+, Z+) emulate a

case where data scientists progressively zoom into the data set increasing the resolution

at which statistics are computed. In this case, the range size follows a sequence, where

the first query is over an entire range. All subsequent pairs of queries divide the range
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of previous queries into two equal parts, then compute statistics on both. Then we

randomly pick one of these parts to continue doing the same. For example, zoom-in

over a range of size 100 can be the sequence: {[0, 100), [0, 50),[50, 100), [50, 75), ... }.

These workloads allow us to test Data Canopy with di↵erent kinds of repetition. They

map to patterns followed by data scientists during data exploration: The initial phase of

exploratory analysis, often classified as the foraging phase (Battle et al. 2016; Pirolli and

Card 2005), exhibits patterns similar to column-uniform workloads. This is when data

scientists compute statistics uniformly over multiple columns. Over time, the analysis

focuses on a smaller set of columns (column-zipfian workloads), and requests for more

detailed information (range-zoom-in workloads) (Battle et al. 2016).
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4.10.1 Reuse in Exploratory Statistical Analysis

In our first experiment we compare Data Canopy against state-of-the-art systems and we

demonstrate its ability to reuse data access and computation. We set-up this experiment

as follows: The data set contains 40 million rows and 100 columns. Each column is

populated with double values randomly distributed in [�109, 109). The total data size

is 32GB. Data Canopy is automatically configured with the optimal in-memory chunk

size. For our experimental system, this results in a chunk size of 256 bytes or 32 data

values (in Section 4.10.7 we verify the chunk selection model). Data Canopy operates

in the online mode, which provides an apples-to-apples comparison across all systems

as it assumes no preprocessing steps.

Figure 4.9 shows the results for all four workloads. Each one of the four graphs in

Figure 4.9 corresponds to one of the workloads in Table 4. Each graph depicts the

evolution of the query performance (response time on the y-axis) as the query workload

evolves, i.e., as we run more exploratory queries (x-axis). In total we run 2000 queries

for each workload. Each graph shows the performance of NumPy, R, MonetDB, and

Data Canopy.

The main observation across all graphs in Figure 4.9 is that while all state-of-the-

art systems maintain a relatively constant behavior across all workloads, Data Canopy

improves as it processes more queries. The y-axis is logarithmic and depicts the response

time per query. For example in Figure 4.9(a) after just a hundred completely uniform

queries, the average response time of Data Canopy is 1.9⇥ lower than NumPy and 11.4⇥
lower than MonetDB. After 2000 queries, the performance improvement per query goes

up to 6.7⇥ and 34.5⇥ respectively. Thus, in most cases Data Canopy results in an

overall benefit (during an exploration path, i.e., over a sequence of queries) of multiple

orders of magnitude. The longer the exploration path the bigger the benefit.

In addition, Data Canopy is faster than all other systems even for the very first query

across all workloads in Figure 4.9. This is because contrary to NumPy and R, Data

Canopy is a tailored C++ implementation for statistics. MonetDB is a performant

analytical system but it is not tailored for statistics.
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Similar observations hold for Figures 4.9(c) and 4.9(d) where the workloads exhibit

zoom-in patterns. In these workloads, the range size decreases by half after the first

500 queries. Then, it decreases by half every 1000 queries. This constant decrease in

range sizes is reflected in the response times of all systems. In other words, all systems

can improve nearly linearly to the size of the range on which statistics are computed.

This is because they simply do computations on fewer data items. On the other hand,

Data Canopy improves drastically by being able to reuse previous data accesses and

computations. For all queries after the first 500 queries, the average response time

goes down to sub-milliseconds. Even during the first 500 queries, there is a continuous

sharp improvement in Data Canopy’s response time. In both workloads, Data Canopy

is completely built at the end of the first 500 queries, and all future queries are directly

synthesized from the basic aggregates within Data Canopy.

For all systems and for all these experiments we make sure that all data is hot in memory

before we query it. This is the least favorable scenario for Data Canopy as its goal is

to reduce data access costs.

Data Canopy Scenarios. Next we evaluate the o✏ine and online modes of Data

Canopy. In addition, we compare against StatSys, which e↵ectively uses the Data

Canopy code to compute statistics but does not cache and reuse basic aggregates.

The set-up of this experiment is exactly the same as before. The results are shown in

Figure 4.10. This time we report the cumulative response time to run all queries. For

all workloads Data Canopy results in significant benefits over the no reuse approach of

StatSys (up to one order of magnitude i.e., 4.7⇥ to 15.8⇥). If we can allow to precompute

the library of basic aggregates up front this brings yet another benefit of two orders of

magnitude (194⇥ to 470.8⇥). In this scenario all queries are directly synthesized from

Data Canopy (each query may at most scan two chunks at the boundaries of its range).

Overall, the improvement is bigger for range-zoom-in workloads (U+ and Z+). This is

because for these workloads the first query on every column results in a complete scan,

due to which basic aggregates required for future queries on that column are already

computed. Overall, Data Canopy is e↵ective in both online and o✏ine mode bringing

drastic improvements in response time.
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4.10.2 Accelerating Machine Learning

We now show how Data Canopy accelerates core machine learning classification and

filtering algorithms. Specifically we study linear regression, bayesian classification, and

collaborative filtering (Bishop 2006). All three algorithm can utilize statistics (basic

aggregates) cached in Data Canopy as primitives. The set-up is the same as in previous

experiments (40 million rows and 100 columns) and we run each of the algorithms on

the entire data set as follows: (i) Simple linear regression is ran on all pairs of columns,

(ii) A gaussian naive bayes classifier is trained on the entire data set. In this case, the

rows in the data set are divided between 40 di↵erent classes (one million samples per

class), (iii) Collaborative filtering (using correlation as the similarity measure) is ran on

the entire data set.

Figure 4.11 shows the performance of these three machine learning algorithms with

Statsys (brute force), online, and o✏ine Data Canopy. We observe that online Data

Canopy (no preprocessing step) results in up to 8⇥ improvement. This is because

running these algorithms results in repetitive calculation of statistics. Furthermore, if

there is enough idle time to build Data Canopy o✏ine, we observe up to six orders of

magnitude improvement in running time for simple linear regression and collaborative

filtering and three orders of magnitude improvement for bayesian classification. The

lower improvement for bayesian classification is due to the fact that we have to compute

statistics for every class in the data set (i.e., 40 times more queries and each query

results in scan of up to two chunks per column at the end-points of the query range).

4.10.3 Scalability

Here we show that Data Canopy scales with the data size (number of columns and

rows), hardware contexts, and queries.

Scaling with Number of Rows. First, we show how Data Canopy scales when we

increase the number of rows in the data set. The set-up is the same as in previous

experiments. This time we vary the rows from 100 million to one billion.

Figure 4.12 reports the results. It depicts the cumulative time to run all four workloads.
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As we increase the number of rows from 100 million to 250 million, the total execution

time increases by 2.51x (average across all workloads) i.e., an approximately linear

increase in execution time. As we double the number of rows beyond 250 million, the

trend diverges slightly from a linear trend. The increase in cumulative response time

as we increase the number of rows from 250 million to 500 million and from 500M to 1

billion is 2.26x and 2.3x respectively. This super-linear increase in cumulative response

time is due to the fact that with more rows, the size of the query range (unif(5,10)% of r)

increases. This results in more chunks being added to the Data Canopy data structure,

for every query that is executed. The overhead of adding these chunks results in this

super-linear increase in the overall response time.
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Scaling with Number of Columns. Now, we show how Data Canopy scales as we

vary the number of columns from 100 to 3200. In this experiment, the number of rows

is fixed to one million.

Figure 4.13 reports the cumulative time to run all four workloads. As we double the

number of columns, we see an average increase of 1.68x and 1.22x in the total execution

time for the uniform (U and U+) and zipfian (Z and Z+) workloads respectively. In

all cases the execution time increases in a sub-linear fashion. For uniform workloads

there is a higher increase in the total execution time because they target all columns

equally and it takes longer to populate the library of basic aggregates. For the zipfian

workloads, since the columns are targeted following a zipfian distribution, increasing the

number of columns does not substantially a↵ect the overall execution time – columns

that are frequently accessed will have their corresponding library of basic aggregates

completely materialized.

Overall, Data Canopy scales in a robust way, being able to absorb the increased amount

of rows and columns.

Scaling with HW contexts. We first show the construction of Data Canopy scales as

we increase the number of cores. We construct a complete Data Canopy (on 40 million

rows and 100 columns) as we increase the amount of cores. Figure 4.14 shows that the

construction time of Data Canopy goes down linearly with the number of cores. This

is because the basic aggregates can be computed and cached completely in parallel.

Scaling with the Number of Queries. We now show how Data Canopy scales when

we increase the number of queries. We keep the same overall setting as before. We

report scaling results only for the range-uniform workloads (U and Z). This is because

for the range-zoom-in workloads (U+ and Z+), Data Canopy is completely built after

the first 500 queries. Thus, all future queries are synthesized directly from Data Canopy

(with minor data accesses to compute residual ranges), and the average response time

remains constant thereafter.

Figure 4.15 shows the results. To make it easier to interpret, we report the average

response time for every sequence of 50K queries. The more queries are processed, the

more Data Canopy improves. For example, the last query takes up to 190.9⇥ less time
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tings, Data Canopy provides 4⇥ perfor-
mance improvement over Statsys.

to compute than the first one. Toward the second half of the query sequence, the pace

of improvement decreases as more queries can be synthesized directly from the library

of basic aggregates without accessing the base data. The initial improvement in average

response time is higher for workload Z as compared to workload U because queries

exhibit more locality in the first one; once the library of basic aggregates is constructed,

though, performance is nearly the same for both workloads as all queries are resolved

directly from this library with only minor access to base data (for residual chunks).

4.10.4 Handling Memory Pressure

We now demonstrate that Data Canopy gracefully handles memory pressure resulting

from: (i) processing queries (that increases the size of materialized basic aggregates)

and (ii) increasing the size of base data.

Memory Pressure From Processing Queries. For this experiment we allow a

memory budget of 8GB. The size of the data is set to 7.2 GB (90 columns, 10 million

rows, 8 bytes record size). This means that initially the entire data set fits in main

memory. Data Canopy operates in online mode which means that initially it has zero

memory footprint and it grows as more queries arrive. We run a sequence of queries

from the U workload. This implies that Data Canopy incrementally materializes new

segment trees, increasing memory pressure.
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Figure 4.16 shows how the average response time of Data Canopy evolves as memory

pressure increases. The dotted line depicts the point beyond which Data Canopy oper-

ates in Phase 2 of the out-of-memory policy i.e., some data is now accessed from disk.

We observe that as Data Canopy enters Phase 2, there is an initial increase in query

response time. This is because Data Canopy is still being built, and every query may

result in a scan of data on disk. However, as the query sequence evolves and Data

Canopy materializes further, the query response time decreases. Now, Data Canopy

scans at most two chunks per query.

Memory Pressure From Increased Data Size. Now we analyze the scenario, where

the memory pressure is due to an increase in the size of base data. Specifically, we show

how Data Canopy compares with Statsys (our baseline system that shares the codebase

with Data Canopy but always compute statistics from data instead of basic aggregates).

We set up an experiment with 8GB of main memory and Data Canopy operates in the

online mode. The number of columns is fixed to 100 and we vary the number of rows

to test the performance of Data Canopy across di↵erent stages of Phase 1 and 2 of

out-of-memory policy.

Figure 4.17 shows the total execution time of 10K queries from the U workload under

di↵erent memory pressures. In Phase 1, Data Canopy remains consistently 4⇥ faster

than Statsys. As the memory pressure builds up and Data Canopy transition to Phase

2, it continues to give a performance improvement of 4⇥ even when only 50 percent of

the data fits in memory. Under extreme memory pressure (only 25 percent of the data

fits in memory) Data Canopy still results in 2⇥ performance improvement.

4.10.5 Memory Footprint and Feasibility

We discuss the memory footprint of Data Canopy in two scenarios: (1) when it is built

with the optimal in-memory chunk size (256 bytes for our experimentation system) and

(2) when, under memory pressure, it operates in Phase 2 of the out-of-memory policy

(the chunk size grows to 64KB). These two scenarios correspond to the maximum and

the minimum memory footprint of Data Canopy respectively. The experiment is on

100 columns and 40 million rows. Each node in Data Canopy is 8B. The analysis is
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Figure 4.19: Data Canopy can support
tens of thousands of bivariate statistics.

conducted with the U workload. In this experiment, Data Canopy operates in the online

mode, i.e., Data Canopy is built as queries are executed.

Figure 4.18 shows both the maximum memory footprint of Data Canopy in each scenario

and the memory footprint after executing 2000 queries. We report the memory footprint

of both univariate and bivariate statistics. In the case of univariate statistics, the

maximum memory footprint is 1GB, and under memory pressure, it can incrementally

shrink down to just 10MB. The maximum memory footprint of bivariate statistics is

32GB and, in a similar fashion, can shrink down to just 490MB. More generally, Data

Canopy is able to vary its overall size (by changing its chunk size) to fit within the

available main memory. Overall, the usage of the U workload remains less than one-

third of the maximum size.

Next, we show that under memory pressure Data Canopy can still e�ciently support

tens of thousands of bivariate statistics over a wide range of data sizes. In this analysis,

the main memory budget is set to 16GB, and Data Canopy operates in Phase 2 of the

out-of-memory policy. The chunk size is equal to a page size (64KB). All univariate

segment trees are in memory. Figure 4.19 shows the number of bivariate segment trees

that Data Canopy supports in the remaining amount of main memory across a wide

range of data sizes. Each of the segment trees can be used to answer a bivariate statistic

over any range of a pair of columns.
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We observe that even for large data sets (1T rows and 1000 columns, data size to

memory ratio of 1:250), Data Canopy can still e�ciently support up to 10000 bivariate

statistics, in addition to all univariate statistics.

4.10.6 Insertions and Updates

Now we show that Data Canopy seamlessly handles insertions of new data as well as

updates to existing data.

Insertions. First, we show that Data Canopy e�ciently handles insertions of new rows

and new columns. We compare how Data Canopy incrementally handles updates to a

strategy, where Data Canopy is built anew every time new data is added. We call this

the reconstruct strategy. In this experiment, Data Canopy starts o↵ with 25 columns

and 100 million rows and operates in the online mode. New data is added in three

phases: (1) the number of rows are doubled, (2) the number of columns are doubled,

and (3) both the number of rows and columns are doubled. There is an interval of 2000

queries between each of the phases. At any point in time, we run the U workload that

targets all data that is in the system. We report the response time as the sequence of

queries passes through the three phases in Figure 4.20. We observe that as new data

is added, there is an initial increase in response time that converges to the optimal for

both strategies. The incremental strategy employed by Data Canopy results in lower

initial overhead as well as converges faster to stable performance as compared to the
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reconstruct strategy. This is because in the incremental strategy, both the insertion of

new rows and new columns is handled in a lightweight manner (merely adding metadata

to the catalog) and basic aggregates are materialized only when and if queries target

the new data. In addition to this, the existing library of basic aggregates is completely

reused, whereas with the reconstruct strategy, the library is built from scratch after

every insertion phase.

Updates. Next, we show that response time is minimally impacted in the presence

of updates to existing data. We show this for a varying percentage of updates in the

workload. We set up an experiment with 100 columns and 100 million rows. We run

2000 queries from the U workload with varying percent of point updates in the workload.

Figure 4.21 shows the total execution time as we increase the proportion (percentage)

of point updates in the workload. As we increase the proportion of point updates in

the workload, the number of read queries decreases resulting in an overall decrease

in execution time. Throughout this time, the overhead introduced by point updates

remains low. In low updates scenarios (1 to 5 percent point updates) the overhead

is less than 1 percent. For extremely high update scenarios (25 to 75 percent point

updates), the average update overhead remains below 10 percent of execution time.

4.10.7 Model Verification

We now verify the query cost model that we developed in Section 4.6. Similar to the

analysis in Figure 4.7, we vary the chunk size for various number of rows and observe
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how this a↵ects performance. The results are shown in Figure 4.22. We report the total

execution time of 10K queries from the U workload on 100 columns.

There are two observations. First, the experimental results verify the behavior we

see from the model in Figure 4.7. That is, there is a convex shape and for all data

sizes there is a common chunk size area where we get the optimal overall performance.

Second, this area is actually quite large (the x-axis is logarithmic) and so picking any

chunk size that is close enough to the center of this area gives optimal behavior. A

positive side-e↵ect of this is that we do not have to make our query cost model any

more complex, i.e., by adding separate weights for when a cache access is a miss or a hit

to capture the di↵erent latencies (traversing a segment tree will typically cause cache

misses while scanning chunks at the end-points of the query range (residual range) will

typically cause a cache miss followed by more than one cache hits). Capturing simply

the number of accessed cache lines allows us to get an estimate close enough in the

optimal range, i.e., our analysis (as shown in Figure 4.7) estimates the optimal chunk

size to be 220 bytes while Figure 4.22 shows that indeed 220 bytes is within the optimal

range. An important side-e↵ect of taking advantage of this behavior is that we do not

need a training process for di↵erent machines (e.g., to figure out the cost of di↵erent

accesses) - all we need is the cache line size. To fully optimize performance we pick a

chunk size that is a multiple of the cache line. That is, the model gives us an optimal

chunk size of 220 bytes, which we translate to a default chunk size of 256 bytes (4 times

64 which is the cache line size).
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5
Deep Collider: Enabling Better Neural Network

Design

We now present Deep Collider in detail. Deep Collider enables better deep learning

model design by demystifying the relationship between a neural network model and

various metrics of interest. The fundamental question we address with Deep Collider

is given a number of parameters, what deep learning model to use. Deep Collider

answers this question holistically, considering not only metrics related to the quality of

the model (such as accuracy) but also those that have to do with the cost of training

and deploying such models. Deep Collider targets a part of the deep learning model

design space that is not very well understood: How to decide between single network

models and ensembles of models under a parameter budget. Deep Collider establishes

that deep neural networks’ ensembles are more useful than single models for a more

comprehensive range of use cases than previously understood. It also provides various

ensemble design guidelines to optimize for both the quality and the cost of ensembles.

This chapter describes the Deep Collider framework, the design space it analyzes, and

the various design guidelines it uncovers.
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Figure 5.1: We explore a design space consisting of three design classes: (a) Single con-
volutional network models, (b) Depth-equivalent ensembles, and (c) Width-equivalent
ensembles. The two ensemble design classes are created by distributing either the width
factor or the depth corresponding to the single network amongst the ensemble networks
while keeping the other factor fixed.

5.1 Framework: Design Space

The design space we explore consists of single convolutional neural network models

and two classes of architecturally-homogenous ensembles. These ensemble classes help

isolate the e↵ect of the two design knobs – depth and width – on the quality and cost of

an ensemble design. We first describe how we ensure a robust comparison of alternative

model designs and then explain the degrees of freedom we explore.

Establishing Grounds for Fair Ranking. A key element of our framework is that the

possible model designs are compared to each other only under equivalent resources. We

ensure this by only comparing designs that have the same number of parameters. This

comparison allows us to separate the quality of a design from the amount of resources

given to it. Another way to think about this is that given a parameter budget, we

can investigate how the three design classes rank for all relevant metrics (training and

inference time, accuracy, and memory usage).

We fix the number of parameters because of its two distinctive properties over other met-

rics (that we could have fixed), such as training time, inference time, or accuracy: First,

the number of parameters of a network is directly proportional to all other resource-

related metrics. Second, the number of parameters is independent of the hardware or

the software platform used and can be computed exactly from a network specification.
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The Single Network Versus Ensemble Design Space. Our design space consid-

ers a convolutional neural network architecture S(w,d) from a class of neural network

architectures C. S(w,d) has width factor w, depth d, and number of parameters |S|.
Similarly an ensemble is described as E = {E1 . . . Ek}. Ensembles are architecturally-

homogenous i.e., all ensemble networks E1 . . . Ek have the same architecture and each

network has |E|/k parameters. When we compare a single network S(w,d) from C with

an ensemble E we ensure that E1 . . . Ek 2 C and |E1| + . . . + |Ek| = |S|.

The reason why we restrict the design space to homogenous ensembles is to reduce the

otherwise intractably large space1 of all possible ensembles given a single network to a

size that we can feasibly and thoroughly experiment with and reason about. Further-

more, many neural network ensembles introduced in research and used in practice are

similarly homogenous, for instance, SnapShot Ensembles and Fast Geometric Ensem-

bles (Huang et al. 2017a; Garipov et al. 2018). Additionally, our method provides a

deterministic procedure of going between single network models and ensembles given a

certain amount of parameters. Major sources of diversity in neural network ensembles

are random weight initialization and stochastic training, both of which we incorporate

in our framework.

Depth-Equivalent and Width-Equivalent Ensembles. Convolutional neural net-

work architectures are determined by two design knobs – the depth and the width factor.

Corresponding to these two design knobs, we create two classes of ensembles: depth-

equivalent ensembles and width-equivalent ensembles. These are depicted in Figure 5.1:

In depth-equivalent ensembles, the depth of the individual ensemble networks is the

same as S (i.e., d), and the width factor is set to the highest possible value (i.e., w0)

without exceeding the parameter budget of |S|. In width-equivalent ensembles, on the

other hand, the width factor is conserved across all ensemble networks (i.e., w), and the

depth is modulated to the highest possible value (i.e., d0) without exceeding |S|:

w0 : k · |E(w0,d)
i |  |S(w,d)|  k · |E(w0+1,d)

i | d0 : k · |E(w,d0)
i |  |S(w,d)|  k · |E(w,d0+1)

i |
1Given a single network with |S| number of parameters, there are

�|S|
k

 
(Stirling number of

the second kind) as many ways of forming ensembles of size k. This number grows at a similar
rate to exponential polynomials, e.g.,

�100
4

 
⇡ 1059.
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Architecture Data sets Epochs Lr schedule batch size
DenseNet SVHN 100 0.1, 0.01(30), 0.001(60) 128
DenseNet C10 and C100 120 0.1, 0.01(60), 0.001(90) 128
DenseNet Tiny ImageNet 90 0.1, 0.01(30), 0.001(60) 64
DenseNet ImageNet32-1K 90 0.1, 0.01(30), 0.001(60) 64
ResNet C10 250 0.1, 0.01(100), 0.001(200) 128
ResNet C100 500 0.1, 0.01(250), 0.001(375) 128
Wide ResNet C10 and C100 200 0.1, 0.01(100), 0.001(200) 128

Table 5.1: For all networks, we use training hyperparameters listed in their respective
papers (lr: learning rate).

The above definition follows that neural networks in depth-equivalent ensembles have

higher depth than those in width-equivalent ensembles. Width-equivalent ensembles

contain wider neural networks than their depth-equivalent counterparts. In this way,

we isolate and study the e↵ect of depth and width on ensemble accuracy as well as the

resource requirement.

Overall, our design space spans three classes of convolutional neural network designs:

(i) single network models, (ii) width-equivalent ensembles, and (iii) depth-equivalent

ensembles. Every class contains several model designs instantiated by the four-tuple

{w, d, |S|, C}. We next describe how we designed an exhaustive experimental framework

to cover various configurations of these four-tuples.

5.2 Framework: Data, Architectures, and Metrics

Datasets and Architectures. We include widely-used state-of-the-art network ar-

chitectures and data sets in our study. These include DenseNets, and (Wide) ResNets

architectures as well as SVHN, C10 and C100, and ImageNet datasets. Table 5.1 sum-

marizes these networks and training data sets as well as corresponding hyperparameters.

We implement our experimental framework in PyTorch and used an Nvidia V100 GPU

to run all experiments.

Evaluation Metrics. We study all three design classes – single network, width- and

depth-equivalent ensembles – across five metrics: (i) generalization accuracy, (ii) train-
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Figure 5.2: The Ensemble Switchover Threshold (EST) occurs consistently across var-
ious network architectures and data sets. Beyond this resource threshold, ensemble
designs outperform single network models.

ing time per epoch, (iii) time to accuracy, (iv) inference time, and (v) memory usage.

When considered together, these metrics provide a holistic picture of the quality and

practicality of models.

5.3 Guideline: Ensembles Outperform Single Network Models Af-

ter a Low to Moderate Parameter Threshold

We observe that both classes of ensembles – depth- and width-equivalent – outperform

single network models after a resource threshold. We call this threshold the Ensemble

Switchover Threshold (EST). Beyond the EST, ensemble models achieve 1 to 3 percent

lower test error rates (across various architectures and data sets) compared with single
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Figure 5.3: Ensembles arrive at lower test error rates than single network models after
the EST has been reached.

networks having the same number of parameters.

The EST appears consistently across a wide range of data sets and architectures (Figure

5.2(a) through Figure 5.2(f)) as well as ensemble sizes (Figure 5.4(a) through Figure

5.4(c) and Figure 5.5(a) through Figure 5.5(c)). In these figures, we use discrete heat

maps to visualize which of the three design classes – single network models (single),

depth-equivalent ensembles (deq), and width-equivalent ensembles (weq) – dominates

in terms of generalization accuracy for a given resource budget. This resource budget

takes the form of the number of parameters (on the x-axis) and epochs (on the y-axis).

We also mark areas where both classes of ensembles outperform single network models.

Figure 5.3 shows the test error rates achieved on various data sets for DenseNet models.

The occurrence of EST both expands and questions the general consensus on the relative

e↵ectiveness of ensemble versus single network models. First, even when allocated the
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same amount of resources, ensemble models still outperform single network models.

This observation expands upon past empirical studies that only show how a k-network

ensemble is more accurate than any of the single network models that it contains (Lee

et al. 2015a; Huang et al. 2017a). Second, the EST occurs in low- to moderate-resource

settings. For instance, in all of our experiments, we observe the EST at the 1M to

1.5M parameter range2 and after no later than half of the training epochs. This trend

challenges the widespread notion that neural network ensembles are useful only when

we have tons of resources at our disposal (Lee et al. 2015a; Ju et al. 2017). Overall, our

results indicate that ensembles of convolutional models are preferable to single network

models for a much wider range of use cases than previously understood.

On the Superior Generalization of Ensembles Under a Parameter Budget. To

interpret why ensembles outperform single network models under a parameter budget,

we use the phenomenon of diminishing returns on increasing model sizes. In the past,

this e↵ect has been independently investigated by (Eigen et al. 2013) and (Dauphin and

Bengio 2013) for a single network model. We hypothesize that as we increase the num-

ber of parameters, single network models exhibit more diminishing returns and plateau

faster than ensemble networks. When the single network’s generalization accuracy starts

showing diminishing returns, the corresponding width-equivalent and depth-equivalent

ensembles have smaller networks with 1/k as many parameters (assuming the parame-

ters are spread equally along k ensemble networks). These individual networks in the

ensemble are a↵ected less by the plateau because they have 1/k as many parameters as

the single network model. Thus, utilizing these networks in an ensemble leads to better

generalization accuracy overall because they do not hit the threshold of the diminish-

ing returns while still being able to benefit from the known properties that ensembles

provide: (i) They enrich the space of hypotheses that are considered by the base model

class and (ii) By averaging over various models, ensembles reduce the variance of base

models, smoothing out variations due to initialization and the learning process.

2Wide ResNets are an exception: This is because, compared to other convolutional archi-
tectures, Wide ResNets have an order of magnitude more parameters even for modest depths
and width factors. For instance, networks presented in the Wide ResNet paper have anywhere
between 8M to 37M parameters compared to the 1M to 10M range for DenseNets (Zagoruyko
and Komodakis 2016).
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Figure 5.4: The Ensemble Switchover Threshold moves to the right as we increase the
number of networks in the ensemble.

Next, we parse out how the data complexity and the composition of the ensemble

networks a↵ect the EST and, in turn, the ranking of the three design classes.

Ensembles are Even More E↵ective for More Complex Data Sets. We observe

that the EST shifts closer to the origin as the training data set’s complexity increases.

This can be seen in Figure 5.2(a) through 5.2(c) where we train DenseNets on pro-

gressively more complex data sets (CIFAR-10, CIFAR-100, and Tiny ImageNet). This

observation indicates that ensemble models are preferable to single models when train-

ing on more complex data sets for an even wider range of available resources. This

observation again expands the utility of ensembles. There is theoretical and empiri-

cal work establishing that ensembles do better for complex data (Bonab and Can 2017;

Huang et al. 2017a). We, however, establish this phenomenon in the resource-equivalent

setting as opposed to past studies that do so for ensembles and single networks with

drastically di↵erent numbers of parameters.

Large Ensembles are E↵ective Under a Large Parameter Budget. As we

increase the number of networks k within an ensemble without increasing the parameter

budget, the overall accuracy of ensemble designs diminishes, pushing the EST to a higher

resource limit. Figure 5.4 demonstrates this phenomenon for DenseNets and Figure 5.5

shows it for ResNets. For instance, for DenseNet models, the EST moves from the 1.5M

range for k = 4 to the 3M range for k = 6 and, then, to the 5M range for k = 8. This
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Figure 5.5: The Ensemble Switchover Threshold moves to the right as we increase the
number of networks in the ensemble. Here, we demonstrate this phenomenon for ResNet
models.
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Figure 5.6: As we increase the size of ensembles, accuracy of individual networks in the
ensemble decreases. This results in an overall reduction in ensemble accuracy shifting
the EST to the high-resource space.

shift can be explained by looking at individual accuracy of ensemble networks. Figure

5.6 shows test error rates of the ensemble as a whole as well as the average test error

rates of individual ensemble networks corresponding to Figure 5.4. We observe that as

we increase the number of networks k (from k = 4 in Figure 5.6(a) to k = 8 in Figure

5.6(c)), the individual test error rates (shown as dotted lines) increases. This increase

happens because individual networks’ size goes down (as we keep a fixed parameter

budget). This observation implies that larger-size ensembles are desirable over smaller

sizes only when we have a su�cient parameter budget to assign to every single network
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in the model. As opposed to previous work, our experiments decouple the parameter

budget from the number of networks in the model. We discover that just increasing the

ensemble size without increasing the total number of parameters hurts accuracy.

Depth-Equivalent Ensembles Outperform Width-Equivalent Ensembles. We

observe that depth-equivalent ensembles are overall more accurate than width-equivalent

ensembles (as shown in Figure 5.3). They also consistently demonstrate EST at a lower

resource range. This can be explained by the fact that modern convolutional neural

network architectures provide better accuracy with increasing depth (Eigen et al. 2013;

Urban et al. 2016). Here, depth-equivalent ensembles have deeper ensemble networks

with better individual accuracy. Thus, when used together in an ensemble, they also

provide better ensemble accuracy. This way, when designing ensemble models for high

accuracy, deeper networks are preferable to wider networks.

EST vs. Memory Split Advantage. For a limited part of the design space, recent

work has observed the existence of a parameter limit beyond which depth-equivalent

ensembles outperform single networks. This is termed as the Memory Split Advantage

or the MSA (Kondratyuk et al. 2020). The EST, however, is not defined just with

respect to the number of parameters but also the number of training epochs, inference

cost, and memory usage as by only looking at these metrics in conjunction, we can get

a complete picture of the relative e↵ectiveness of ensembles vs. single networks. In this

way, the EST subsumes the MSA, and we also verify the MSA across a significantly

larger design space (e.g., we consider 3⇥ more data sets and twice as many architecture

types) than has been done before.

On the Instability of Width-Equivalent Ensembles. The performance of width-

equivalent ensembles (weq ensembles) exhibits unstable behavior. In particular, it has

local spikes when it comes to the test error rates. This is particularly pronounced for

the ResNet ensembles (Figure 5.3(d) and Figure 5.3(e)).

Our interpretation of this phenomenon is that these local spikes have to do with the

relative depth of networks in the width-equivalent ensemble designs. When comparing

designs that are close together in the parameter range, we observe that the designs with

more depth (of ensemble networks) generally outperform those with less depth even if
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(b) DenseNets C-100 (k=4)
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(c) DenseNets Tiny INet (k=4)
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(d) ResNets C-10 (k=4)
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(e) ResNets C-100 (k=4)
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(f) Wide ResNets C-10 (k=4)

Figure 5.7: When ensemble designs can provide better accuracy, they can also do so
faster than single network models (missing bars indicate that designs cannot reach single
network model accuracy).

the latter have more parameters. The depth of networks in the weq ensemble plays a

more dominant role than the total number of parameters they have. As an example of

this, consider Figure A(a) and A(b) in the revised version of the paper (ResNet CIFAR-

10 (k=4) and ResNet CIFAR-100 (k=4). Weq exhibit three spikes at 2.24M, 3.28M,

and 5.03M parameters. All three of these points are flanked on both sides by designs

that have similar number of parameters but more depth.

This observation is consistent with past observations that depth is more influential in

determining the accuracy of networks (Eigen et al. 2013).
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(b) DenseNets C-100 (k=4)
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(c) DenseNets Tiny INet (k=4)
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(d) ResNets C-10 (k=4)
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(f) Wide ResNets C-10 (k=4)

Figure 5.8: Depth-equivalent ensembles take longer to train per epoch as compared to
single network models. Width-equivalent ensembles, on the other hand, take comparable
time.

5.4 Guideline: Ensembles Train Faster and Provide Similar Infer-

ence Time

First, we analyze the training time. Despite taking longer per epoch, both ensemble

classes achieve the accuracy of single network models significantly faster for a consid-

erable part of the design space (e.g., 1.2⇥ to 5⇥ faster across our experiments). This

happens after the EST has been reached, i.e., when ensemble designs can provide better

accuracy, they can also do so faster than single network models. This can be seen in Fig-

ure 5.7. Here, we plot the total training time needed for any of the three design classes

to achieve the maximum accuracy of single network models under the same parameter

budget. Figure 5.8 shows the corresponding training time per epoch.

The Combined Depth Determines Per Epoch Training Time.. We observe that

both classes of ensembles, on average, take longer to train per epoch as compared to
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(c) Wide ResNets on CIFAR-10

Figure 5.9: We break down per epoch training time into: (i) time spent per layer and
(ii) total number of layers. We observe that the total number of layers in the model
more significantly determines the per epoch training time as compared to the width.
The ensemble size is 4 across all these experiments.

single network models as they train k networks instead of one. How much more time

ensembles take per epoch depends heavily on the ensemble networks’ design: This ad-

ditional time is negligible for width-equivalent ensembles whereas, for depth-equivalent

ensembles, it results in 2⇥ more expensive per epoch training. This trend can be ex-

plained by how the training time per epoch scales with respect to the width and depth

of convolutional neural network models. This ultimately connects to how GPUs process

data, which is more favorable for networks with few wider layers as compared to those

that have several thinner layers.

We break down the training time per epoch of all designs into two constituents: time

spent per layer and number of layers. Figure 5.9shows this breakdown for various ar-

chitectures. We observe that the total number of layers in a model (for ensembles, this

is the sum of all networks’ depth) majorly determines the training time per epoch. For

the same parameter budget, depth-equivalent ensembles have proportionally more lay-

ers, whereas width-equivalent ensembles have proportionally more width. The average

time per layer depends on the width and does not increase significantly as we move

from depth-equivalent ensembles to width-equivalent ensembles. On the other hand,

the total number of layers scales linearly with depth. For the same parameter budget,

the total number of layers is significantly higher for depth-equivalent ensembles than
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(d) ResNets C-10 (k=4)

16|26|0.37
16|38|0.57
16|50|0.76
24|26|0.83
16|62|0.96
24|38|1.27
32|26|1.47
24|50|1.71
24|62|2.14
32|38|2.25
32|50|3.03
48|26|3.3
32|62|3.8
48|38|5.05
48|50|6.79
48|62|8.54

0

0.05

0.1

0.15

0.2
single weq deq

width factor | depth | number of parameters (M)

in
fe

re
nc

e 
tim

e 
pe

r i
m

ag
e 

(m
s)

(e) ResNets C-100 (k=4)
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(f) Wide ResNets C-10 (k=4)

Figure 5.10: Width-equivalent ensembles take comparable time to single network models
for inference. Depth-equivalent ensembles take significantly longer.

the other two designs, resulting in higher per epoch training.

From a GPU perspective, wider and shallower networks are more e�cient to execute

than narrower and deeper networks for the same parameter budget. This can be at-

tributed to the massive amount of data parallelism in modern GPUs. Increasing the

network’s width just increases the number of kernels within layers. This increase more

e�ciently utilizes GPU’s massive capacity to perform the same operation on multiple

data items. On the other hand, deepening a network introduces new layers (and opera-

tions) that require additional synchronization steps slowing down the overall execution.

Networks in Ensemble Models Converge Faster than Single Network Models

for the Same Parameter Budget. The fact that ensemble designs can reach the same

accuracy faster than single network models can be attributed to the fact that, for the

same parameter budget, all networks in the ensemble model are smaller than the single

network model. Smaller networks are known to converge faster albeit to lower accuracy

than larger networks.
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However, we observe that the distinct advantage ensemble designs provide over the

single model is that when we use smaller networks in an ensemble, we get the best of

both worlds. We converge faster at an individual network level, and ensembling makes

up for the generalization accuracy.

Overall, these observations again question the conventional wisdom of ensembles being

significantly slower to train than single network models. When we analyze the design

space under a fixed parameter budget, we uncover that for a vast range of the design

space: (i) width-equivalent ensembles introduce negligible overhead to per epoch train-

ing time as compared to single network models and (ii) both ensemble designs achieve

and surpass accuracy of single network models in considerably less training time.

Width-Equivalent Ensembles Provide Competitive Inference Time. We pro-

vide the inference time per image in Figure 5.10 and observe a similar trend to train-

ing time per epoch. While depth-equivalent ensembles are significantly slower, width-

equivalent ensembles provide comparable inference speed to single network models.

Again, this questions conventional wisdom that expects ensembles to be substantially

slower in inference.

5.5 Guideline: Ensembles are Memory Efficient

Regarding memory usage we observe that the trend favors both classes of ensemble

designs over single network models. Figure 5.11 provides the amount of memory used

as we train depth-equivalent ensembles, width-equivalent ensembles, and single network

models. This is the minimum amount of memory that a GPU needs to train any of

these designs for the batch sizes provided in Table 5.1. This memory is majorly used to

store model parameters and intermediate results.

The superior memory e�ciency of ensemble models is because when we train a k-

networks ensemble, at any point during the training process, we only need as much

memory to train one of the k networks (having 1
k as many parameters compared to the

single network). This observation has two important implications: First, we can use

larger batch sizes for the same GPU while training an ensemble of networks. This, for
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(a) DenseNets C-10 (k=4)
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(b) DenseNets C-10 (k=4)
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(c) DenseNets Tiny INet (k=4)
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(d) ResNets C-10 (k=4)
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(e) ResNets C-100 (k=4)
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(f) Wide ResNets C-10 (k=4)

Figure 5.11: Both classes of ensemble models are significantly more memory e�cient.

instance, is useful when training complex data sets such as ImageNet. Additionally, we

can feasibly train the same number of parameters in an ensemble using lower-end GPUs

with less memory.
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6
MotherNets: Rapid Deep Ensemble Learning

We now present MotherNets in detail. MotherNets enable higher accuracy and practical

training cost for large and diverse neural network ensembles. A MotherNet captures

the structural similarity across some or all members of a deep neural network ensemble,

allowing us to share data movement and computation costs across these networks. We

first train a single or a small set of MotherNets, and, subsequently, we generate the

target ensemble networks by transferring the function from the trained MotherNet(s).

Then, we continue to train these ensemble networks, which now converge drastically

faster than training from scratch. In this chapter, we describe how to train ensembles

through MotherNets and experimentally analyze how MotherNets establishes a Pareto-

frontier for the accuracy-training time tradeo↵ of ensemble networks.

6.1 Constructing MotherNets

Definition: MotherNet. Given a cluster of k neural networks C = {N1, N2, . . . Nk},

where Ni denotes the i-th neural network in C, the MotherNet Mc is defined as the

largest network from which all networks in C can be obtained through function-preserving
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Figure 6.1: MotherNets train an ensemble of neural networks by first training a set of
MotherNets and transferring the function to the ensemble networks. The ensemble net-
works are then further trained converging significantly faster than training individually.

transformations. MotherNets divide an ensemble into one or more such network clusters

and construct a separate MotherNet for each.

Constructing a MotherNet for Fully-Connected Networks. Assume a cluster

C of fully-connected neural networks. The input and the output layers of Mc have the

same structure as all networks in C, since they are all trained for the same task. Mc

is initialized with as many hidden layers as the shallowest network in C. Then, we

construct the hidden layers of Mc one-by-one going from the input to the output layer.

The structure of the i-th hidden layer of Mc is the same as the i-th hidden layer of the

network in C with the least number of parameters at the i-th layer. Figure 6.1 shows

an example of how this process works for a toy ensemble of two three-layered and one

four-layered neural networks. Here, the MotherNet is constructed with three layers.

Every layer has the same structure as the layer with the least number of parameters at

that position (shown in bold in Figure 6.1 Step (1)).

Algorithm 6.1 describes how to construct the MotherNet for a cluster of fully-connected

neural networks. We proceed layer-by-layer selecting the layer with the least number of

parameters at every position.

Constructing a MotherNet for Convolutional Networks. Convolutional neural

network architectures consist of blocks of one or more convolutional layers separated
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by pooling layers (He et al. 2016; Shazeer et al. 2017; Simonyan and Zisserman 2015;

Szegedy et al. 2015). These blocks are then followed by another block of one or more

fully-connected layers. For instance, VGGNets are composed of five blocks of convolu-

tional layers separated by max-pooling layers, whereas, DenseNets consist of four blocks

of densely connected convolutional layers. For convolutional networks, we construct the

MotherNet Mc block-by-block instead of layer-by-layer. The intuition is that deeper

or wider variants of such networks are created by adding or expanding layers within

individual blocks instead of adding them all at the end of the network. For instance,

VGG-C (with 16 convolutional layers) is obtained by adding one layer to each of the last

three blocks of VGG-B (with 13 convolutional layers) (Simonyan and Zisserman 2015).

To construct the MotherNet for every block, we select as many convolutional layers to

include in the MotherNet as the network in C with the least number of layers in that

block. Every layer within a block is constructed such that it has the least number of

filters and the smallest filter size of any layer at the same position within that block.

An example of this process is shown in Figure 6.2. Here, we construct a MotherNet for

three convolutional neural networks block-by-block. For instance, in the first block, we

include one convolutional layer in the MotherNet having the smallest filter width and

the least number of filters (i.e., 3 and 32 respectively).

Algorithm 6.2 provides a detailed strategy to construct the MotherNet for a cluster of

convolutional neural networks. We proceed block-by-block, where each block is com-

posed of multiple convolutional layers. The MotherNet has as many blocks as the net-

work with the least number of blocks. Then, for every block, we proceed layer-by-layer

and construct the MotherNet layer at every position as follows: First, we compute the

least number of convolutional filters and convolutional filter sizes at that position across

all ensemble networks. Let these be Fmin and Smin respectively. Then, in MotherNet,

we include a convolutional layer with Fmin filters of Smin size at that position.

Constructing MotherNets for Ensembles of Neural Networks with Di↵erent

Sizes and Topologies. By construction, the overall size and topology (sequence of

layer sizes) of a MotherNet is limited by the smallest network in its cluster. If we were

to assign a single cluster to all networks in an ensemble that has a large di↵erence in

size and topology between the smallest and the largest networks, there will be a corre-
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Figure 6.2: Constructing MotherNet for convolutional neural networks block-by-block.
For each layer, we select the layer with the least number of parameters from the ensemble
networks (shown in bold rectangles) (Notation: <filter width> : <filter number>).

spondingly large di↵erence between at least one ensemble network and the MotherNet.

This may lead to a scenario where the MotherNet only captures an insignificant amount

of commonality. This would negatively a↵ect performance as we would not be able to

share significant computation and data movement costs across the ensemble networks.

This property is directly correlated with the size of the MotherNet.

In order to maintain the ability to share costs in diverse ensembles, we partition such an

ensemble into g clusters, and for every cluster, we construct and train a separate Moth-

erNet. To perform this clustering, the m networks in the ensemble E = {N1, N2, . . . Nm}
are represented as vectors Ev = {V1, V2, . . . Vm} such that V j

i stores the size of the j-

th layer in Ni. These vectors are zero-padded to a length of max({|N1|, |N2|, . . . |Nm|})

(where |Ni| is the number of layers in Ni). For convolutional neural networks, these vec-

tors are created by first creating similarly zero-padded sub-vectors per block and then

concatenating the sub-vectors to get the final vector. In this case, to fully represent

convolutional layers, V j
i stores a 2-tuple of filter sizes and number of filters.

Given a set of vectors Ev, we create g clusters using the balanced K-means algorithm

while minimizing the Levenshtein distance between the vector representation of networks
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Algorithm 6.1 Constructing the MotherNet for fully-connected neural networks

Input: E: ensemble networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes

M.input.num param  E[0].input.num param;
M.output.num param  E[0].output.num param;
M.num layers  getShallowestNetwork(E).num layers;

// set hidden layer sizes

for i 0 . . .M.num layers-1 do
M.layers[i].num param  getMin(E,i);

end
return M;

// Get the min. size layer at posn

Function getMin(E,posn)
min  E[0].layers[posn].num param;
for j  0 . . . len(E)-1 do

if E[j].layers[posn].num param < min then
min  E[j].layers[posn].num param

end

end
return min;

in a cluster and its MotherNet (Levenshtein 1966; MacQueen 1967). The Levenshtein

or the edit distance between two vectors is the minimum number of edits – insertions,

deletions, or substitutions – needed to transform one vector to another. By minimizing

this distance, we ensure that, for every cluster, the ensemble networks can be obtained

from their cluster’s MotherNet with the minimal amount of edits constrained on g. Dur-

ing every iteration of the K-means algorithm, instead of computing centers of candidate

clusters, we construct MotherNets corresponding to every cluster. Then, we use the edit

distance between these MotherNets and all networks to perform cluster reassignments.

Constructing MotherNets for Ensembles of Diverse Architecture Classes. An

individual MotherNet is built for a cluster of networks that belong to a single architec-

ture class. Each architecture class has the property of function-preserving navigation.

This is to say that given any member of this class, we can build another member of
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Algorithm 6.2 Constructing the MotherNet for convolutional neural networks
block-by-block.

Input: E: ensemble of convolutional networks in one cluster;
Initialize: M: empty MotherNet;

// set input/output layer sizes and number of blocks

M.input.num param  E[0].input.num param;
M.output.num param  E[0].output.num param;
M.num blocks  getShallowestNetwork(E).num blocks;

// set hidden layers block-by-block

for k  0 . . .M.num blocks-1 do
M.block[k].num hidden  getShallowestBlockAt(E,k).num hidden; // select the

shallowest block

for i 0 . . .M.block[k].num hidden-1 do
M.block[k].hidden[i]..num filters, M.block[k].hidden[i]..filter size  get-
Min(E,k,i)

end

end
return M;

// Get minimum number of filters and filter size at posn

Function getMin(E,blk,posn)

min num filters  E[0].block[blk].hidden[posn].num filters;
min filter size  E[0].block[blk].hidden[posn].filter size;
for j  0 . . . len(E) do

if E[j].block[blk].hidden[posn].num filters < min num filters then
min num filters  E[j].block[blk].hidden[posn].num filters;

end
if E[j].block[blk].hidden[posn].filter size < min filter size then

min filter size  E[j].block[blk].hidden[posn].filter size;
end

end
return min num filters, min filter size;

this class with more parameters but having the same function. Multiple types of neural

networks fall under the same architecture class (Cai et al. 2018). For instance, we can

build a single MotherNet for ensembles of AlexNets, VGGNets, and Inception Nets as

well as one for DenseNets and ResNets. To handle scenarios when an ensemble con-
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tains members from diverse architecture classes i.e., we cannot navigate the entire set

of ensemble networks in a function-preserving manner, we build a separate MotherNet

for each class (or a set of MotherNets if each class also has networks of diverse sizes).

6.2 Training MotherNets

Overall, the techniques described in the previous paragraphs allow us to create g Moth-

erNets for an ensemble, being able to capture the structural similarity across diverse

networks both in terms of architecture and topology. We now describe how to train an

ensemble using one or more MotherNets to help share the data movement and compu-

tation costs amongst the target ensemble networks.

Training Step 1: Training the MotherNets. First, the MotherNet for every cluster

is trained from scratch using the entire data set until convergence. This allows the

MotherNet to learn a good core representation of the data. The MotherNet has fewer

parameters than any of the networks in its cluster (by construction) and thus it takes

less time per epoch to train than any of the cluster networks.

Training Step 2: Hatching Ensemble Networks. Once the MotherNet correspond-

ing to a cluster is trained, the next step is to generate every cluster network through a

sequence of function-preserving transformations that allow us to expand the size of any

feed-forward neural network, while ensuring that the function (or mapping) it learned

is preserved (Chen et al. 2016). We call this process hatching and there are two distinct

approaches to achieve this: Net2Net increases the capacity of the given network by

adding identity layers or by replicating existing weights (Chen et al. 2016). Network

Morphism, on the other hand, derives su�cient and necessary conditions that when

satisfied will extend the network while preserving its function and provides algorithms

to solve for those conditions (Wei et al. 2016, 2017).

In MotherNets, we adopt the first approach i.e., Net2Net. Not only is it conceptually

simpler but in our experiments we observe that it serves as a better starting point for

further training of the expanded network as compared to Network Morphism. Over-

all, function-preserving transformations are readily applicable to a wide range of feed-
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forward neural networks including VGGNets, ResNets, FractalNets, DenseNets, and

Wide ResNets (Chen et al. 2016; Wei et al. 2016, 2017; Huang et al. 2017b). As such

MotherNets is applicable to all of these di↵erent network architectures. In addition,

designing function-preserving transformations is an active area of research and better

transformation techniques may be incorporated in MotherNets as they become available.

Hatching is a computationally inexpensive process that takes negligible time compared

to an epoch of training (Wei et al. 2016). This is because generating every network in

a cluster through function preserving transformations requires at most a single pass on

layers in its MotherNet.

Training Step 3: Training Hatched Networks. To explicitly add diversity to the

hatched networks, we randomly perturb their parameters with gaussian noise before

further training. This breaks symmetry after hatching and it is a standard technique to

create diversity when training ensemble networks (Hinton et al. 2015; Lee et al. 2015b;

Wei et al. 2016, 2017). Further, adding noise forces the hatched networks to be in a

di↵erent part of the hypothesis space from their MotherNets.

The hatched ensemble networks are further trained converging significantly faster com-

pared to training from scratch. This fast convergence is due to the fact that by initial-

izing every ensemble network through its MotherNet, we placed it in a good position in

the parameter space and we need to explore only for a relatively small region instead

of the whole parameter space. We show that hatched networks typically converge in a

very small number epochs.

We experimented with both full data and bagging to train hatched networks. We use

full data because given the small number of epochs needed for the hatched networks,

bagging does not o↵er any significant advantage in speed while it hurts accuracy.

Parallel Training. MotherNets create a new schedule for “sharing epochs” amongst

networks of an ensemble but the actual process of training in every epoch remains un-

changed. As such, state-of-the-art approaches for distributed training such as parameter-

server (Dean et al. 2012) and asynchronous gradient descent (Gupta et al. 2016; Iandola

et al. 2016) can be applied to fully utilize as many machines as available during any

stage of MotherNets’ training.
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6.3 Navigating Accuracy-Training time Tradeoff

MotherNets can navigate the tradeo↵ between accuracy and training time by controlling

the number of clusters g, which in turn controls how many MotherNets we have to train

independently from scratch. For instance, on one extreme if g is set to m, then every

network in E will be trained independently, yielding high accuracy at the cost of higher

training time. On the other extreme, if g is set to one then, all ensemble networks

have a shared ancestor and this process may yield networks that are not as diverse or

accurate, however, the training time will be low.

MotherNets expose g as a tuning knob. As we show in our experimental analysis,

MotherNets achieve a new Pareto frontier for the accuracy-training cost tradeo↵ which

is a well-defined convex space. That is, with every step in increasing g (and consequently

the number of independently trained MotherNets) accuracy does get better at the cost

of some additional training time and vice versa. Conceptually this is shown in Figure ??.

This convex space allows robust and predictable navigation of the tradeo↵. For example,

unless one needs best accuracy or best training time (in which case the choice is simply

the extreme values of g), they can start with a single MotherNet and keep adding

MotherNets in small steps until the desired accuracy is achieved or the training time

budget is exhausted. This process can further be fine-tuned using known approaches

for hyperparameter tuning methods such as bayesian optimization, training on sampled

data, or learning trajectory sampling (Goodfellow et al. 2016).

6.4 Shared-MotherNets: Enabling Fast Ensemble Inference

Shared-MotherNets. We introduce shared-MotherNets to reduce inference time and

memory requirement of ensembles trained through MotherNets. In shared-MotherNets,

after the process of hatching (step 2 from §6.2), the parameters originating from the

MotherNet are incrementally trained in a shared manner. This yields a neural network

ensemble with a single copy of MotherNet parameters reducing both inference time and

memory requirement.
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Shared MotherNetsHatched ensemble networks

Shared param.Ensemble param.

Figure 6.3: To construct a shared-MotherNet, parameters originating from the Moth-
erNet are combined together in the ensemble.

Constructing a Shared-MotherNet. Given an ensemble E of K hatched networks

(i.e., those networks that are obtained from a trained MotherNet), we construct a shared-

MotherNet S as follows: First, S is initialized with K input and output layers, one for

every hatched network. This allows S to produce as many as K predictions. Then,

every hidden layer of S is constructed one-by-one going from the input to the output

layer and consolidating all neurons across all of E that originate from the MotherNet.

To consolidate a MotherNet neuron at layer li, we first reduce the k copies of that

neuron (across all K networks in E) to a single copy. All inputs to the neuron that may

originate from various other neurons in the layer li�1 across di↵erent hatched networks

are added together. The output of this consolidated neuron is then forwarded to all

neurons in the next layer li+1 (across all hatched networks) which were connected to

the consolidated neuron.

Figure 6.3 shows an example of how this process works for a simple ensemble of three

hatched networks. The filled circles represent neurons originating from the Mother-

Net and the colored circles represent neurons from ensemble networks. To construct

the shared-MotherNet (shown on the right), we go layer-by-layer consolidating neurons

originating from MotherNet.

The shared-MotherNet is then trained incrementally. This proceeds similarly to step 3

from §6.2, however, now through the shared-MotherNet, the neurons originating from
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the MotherNet are trained jointly. This results in an ensemble that has K outputs,

but some parameters between the networks are shared instead of being completely

independent. This reduces the overall number of parameters, improving both the speed

and the memory requirement of inference.

Memory Reduction. Assume an ensemble E = {N0, N1, . . . NK�1} of K neural net-

works (where Ni denotes a neural network architecture in the ensemble with |Ni| number

of parameters) and its MotherNet M . The number of parameters in the ensemble is

reduced by a factor of � given by:

� = 1� k|M |
PK�1

i=0 |Ni|

6.5 Experimental Analysis

We demonstrate that MotherNets enable a better training time-accuracy tradeo↵ than

existing fast ensemble training approaches across multiple data sets and architectures.

We also show that MotherNets make it more realistic to use large neural network en-

sembles i.e., those having dozens of neural networks.

Baselines. We compare against five state-of-the-art methods spanning both techniques

that train all ensemble networks individually, i.e., Full Data (FD) and Bagging (BA), as

well as approaches that generate ensembles by training a single network, i.e., Knowledge

Distillation (KD), Snapshot Ensembles (SE), and TreeNets (TN).

Evaluation Metrics. We capture both the training cost and the resulting accuracy

of an ensemble. For the training cost, we report the wall clock time as well as the

monetary cost for training on the cloud. For ensemble test accuracy, we report the

test error rate under the widely used ensemble-averaging method (Van der Laan et al.

2007; Guzman-Rivera et al. 2012, 2014; Lee et al. 2015b). Experiments with alternative

inference methods (e.g., super learner and voting (Ju et al. 2017)) showed that the

method we use does not a↵ect the overall results in terms of comparing the algorithms.
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Ens. Member networks Param. SE alternative Param.

V5 VGG 13, 16, 16A, 16B, and 19 from
the VGGNet paper (Simonyan and
Zisserman 2015)

682M VGG-16 ⇥ 5 690M

D5 Two variants of DenseNet-40 (with
12 and 24 convolutional filters
per layer) and three variants of
DenseNet-100 (with 12, 16, and
24 filters per layer) (Huang et al.
2017b)

17M Dense-60 ⇥ 5 17.3M

R10 Two variants each of ResNet 20, 32,
44, 56, and 110 from the ResNet pa-
per (He et al. 2016)

327M R-56 ⇥ 10 350M

V25 25 variants of VGG-16 with dis-
tinct architectures created by pro-
gressively varying one layer from
VGG16 in one of three ways: (i) in-
creasing the number of filters, (ii)
increasing the filter size, or (iii) ap-
plying both (i) and (ii)

3410M VGG-16 ⇥ 25 3450M

V100 100 variants of VGG-16 created as
described above

13640M VGG-16 ⇥ 100 13800M

Table 6.1: We experiment with ensembles of various sizes and network architectures.

Ensemble Networks. We experiment with ensembles of various convolutional ar-

chitectures such as VGGNets, ResNets, Wide ResNets, and DenseNets. Ensembles of

these architectures have been extensively used to evaluate fast ensemble training ap-

proaches (Lee et al. 2015a; Huang et al. 2017a). Each of these ensembles are composed

of networks having diverse architectures as described in Table 6.1.

To provide a fair comparison with SE (where the snapshots have to be from the same

network architecture), we create snapshots having comparable number of parameters

to each of the ensembles described above. This comparable alternatives we used for SE

are also summarized in Table 6.1.
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For TN, we varied the number of shared layers and found that sharing the 3 initial

layers provides the best accuracy. This is similar to the optimal proportion of shared

layers in the TreeNets paper (Lee et al. 2015a). TN is not applicable to DenseNets or

ResNets as it is designed only for networks without skip-connections (Lee et al. 2015a).

We omit comparison with TN for such ensembles.

Training Setup. For all training approaches we use stochastic gradient descent with a

mini-batch size of 256 and batch-normalization. All weights are initialized by sampling

from a standard normal distribution. Training data is randomly shu✏ed before every

training epoch. The learning rate is set to 0.1 with the exception of DenseNets. For

DenseNets, we use a learning rate of 0.1 to train MotherNets and 0.01 to train hatched

networks. This is inline with the learning rate decay used in the DenseNets paper

(Huang et al. 2017b). For FD, KD, TN, and MotherNets, we stop training if the training

accuracy does not improve for 15 epochs. For SE we use the optimized training setup

proposed in the original paper (Huang et al. 2017a), starting with an initial learning

rate of 0.2 and then training every snapshot for 60 epochs.

Data Sets. We experiment with a diverse array of data sets: SVHN, CIFAR-10, and

CIFAR-100 (Krizhevsky 2009; Netzer et al.). The SVHN data set is composed of images

of house numbers and has ten class labels. There are a total of 99K images. We use

73K for training and 26K for testing. The CIFAR-10 and CIFAR-100 data sets have 10

and 100 class labels respectively corresponding to various images of everyday objects.

There are a total of 60K images – 50K training and 10K test images.

Hardware Platform. All experiments are run on the same server with Nvidia Tesla

V100 GPU.

6.5.1 Better Accuracy-Training Time Tradeoff

We first show how MotherNets strike an overall superior accuracy-training time tradeo↵

when compared to existing fast ensemble training approaches. Figure 6.4 shows results

across all our test data sets and ensemble networks. All graphs in Figure 6.4 depict the

tradeo↵ between training time needed versus accuracy achieved. The core observation
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Figure 6.4: MotherNets provide consistently better accuracy-training time tradeo↵ when
compared with existing fast ensemble training approaches across various data sets, ar-
chitectures, and ensemble sizes.

from Figure 6.4 is that across all datasets and networks, MotherNets help establish a

new Pareto frontier of this tradeo↵. The di↵erent versions of MotherNets shown in

Figure 6.4 represent di↵erent numbers of clusters used (g). When g=1, we use a single

MotherNet, optimizing for training time, while when g becomes equal to the ensemble

size, we optimize for accuracy (e↵ectively this is equal to FD as every network is trained

independently in its own cluster).

The horizontal line at the top of each graph indicates the accuracy of the best-performing

single model in the ensemble trained from scratch. This serves as a benchmark and, in

the vast majority of cases, all approaches do improve over a single model even when

they have to sacrifice on accuracy to improve training time. MotherNets is consistently

and significantly better than that benchmark.

Next we discuss each individual training approach and how it compares to MotherNets.

MotherNets vs. KD, TN, and BA. MotherNets (with g=1) is 2⇥ to 4.2⇥ faster

than KD and results in up to 2 percent better test accuracy. KD su↵ers in terms of

accuracy because its ensemble networks are more closely tied to the base network as

they are trained from the output of the same network. KD’s higher training cost is

because distilling is expensive. Every network starts from scratch and is trained on

the data set using a combination of empirical loss and the loss from the output of the

teacher network. We observe that distilling a network still takes around 60 to 70 percent

of the time required to train it using just the empirical loss.
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V5

C10

D5

C10

R10

C10

V25

C100

V25

SVHN

MN 96.71 97.43 98.61 87.5 97.17

SE 96.03 96.91 97.11 86.9 97.3

Table 6.2: MotherNets (with g=1) give better oracle test accuracy compared to Snap-
shot ensembles.

To achieve comparable accuracy to MotherNets (with g=1), TN requires up to 3.8⇥
more training time on V 5. In the same time budget, MotherNets can train with g=4

providing over one percent reduction in test error rate. The higher training time of

TN is due to the fact that it combines several networks together to create a monolithic

architecture with various branches. We observe that training this takes a significant

time per epoch as well as requires more epochs to converge. Moreover, TN does not

generalize to neural networks with skip-connections.

Figure 6.4 does not show results for BA because it is an outlier. BA takes on average

73 percent of the time FD needs to train but results in significantly higher test error

rate than any of the baseline approaches including the single model. Compared to BA,

MotherNets is on average 3.6 ⇥ faster and results in significantly better accuracy – up

to 5.5 percent lower absolute test error rate. These observations are consistent with

past studies that show how BA is ine↵ective when training deep neural networks as it

reduces the number of unique data items seen by individual networks (Lee et al. 2015a).

Overall, the low test error rate of MotherNets when compared to KD, TN, and BA

stems from the fact that transferring the learned function from MotherNets to target

ensemble networks provides a good starting point as well as introduces regularization for

further training. This also allows hatched ensemble networks to converge significantly

faster, resulting in overall lower training time.

Training Time Breakdown. To better understand where the time goes during the

training process, Figure 6.5 provides the time breakdown per ensemble network. We

show this for the D5 ensemble and compare MotherNets (with g=1) with individual

training approaches FD, BA, and KD. While other approaches spend significant time
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training each network, MotherNets, can train these networks very quickly after having

trained the core MotherNet (black part in the MotherNets stacked bar in Figure 6.5).

We observe similar time breakdown across all ensembles in our experiments.

6.5.2 MotherNets vs. SE and Scaling to Large Ensembles

Across all experiments in Figure 6.4, SE is the closest baseline to MotherNets. In e↵ect,

SE is part of the very same Pareto frontier defined by MotherNets in the accuracy-

training cost tradeo↵. That is, it represents one more valid point that can be useful

depending on the desired balance. For example, in Figure 6.4a (for V5 CIFAR-10), SE

sacrifices nearly one percent in test error rate compared to MotherNets (with g=1) for a

small improvement in training cost. We observe similar trends in Figure 6.4c and 6.4d).

In Figure 6.4b, SE achieves a balance that is in between MotherNets with one and two

clusters. However, when training V25 on SVHN (Figure 6.4e) SE is in fact outside the

Pareto frontier as it is both slower and achieves worst accuracy.

Overall, MotherNets enables drastic improvements in either accuracy or training time

compared to SE by being able to control and navigate the tradeo↵ between the two.

Oracle Accuracy. Also, Table 6.2 shows that MotherNets (with g=1) enable better

oracle test accuracy when compared with SE across all our experiments. This is the

accuracy if an oracle were to pick the prediction of the most accurate network in the

ensemble per test element (Guzman-Rivera et al. 2012, 2014; Lee et al. 2015b). Oracle

accuracy is an upper bound for the accuracy that any ensemble inference technique

could achieve. This metric is also used to evaluate the utility of ensembles when they

are applied to solve Multiple Choice Learning (MCL) problems (Guzman-Rivera et al.

2014; Lee et al. 2016; Brodie et al. 2018).

Scaling to Very Large Ensembles. As we discussed before, large ensembles help

improve accuracy and thus ideally we would like to scale neural network ensembles to

large number of models as it happens for other ensembles such as random forests (Oshiro

et al. 2012; Bonab and Can 2016, 2017). Our previous results were for small to medium

ensembles of 5, 10 or 25 networks. We now show that when it comes to larger ensembles,

MotherNets dominate SE in both how accuracy and training time scale.
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Figure 6.6 shows results as we increase the number of networks up to a hundred variants

of VGGNets trained on CIFAR-10. For every point in Figure 6.6, k indicates the number

of networks. For MotherNets we plot results for the time-optimized version with g=1,

as well as with g=8.

Figure 6.6 shows that as the size of the ensemble grows, MotherNets scale much better in

terms of training time. Toward the end (for 100 networks), MotherNets train more than

10 hours faster (out of 40 total hours needed for SE). The training time of MotherNets

grows at a much smaller rate because once the MotherNet has been trained, it takes 40

percent less time to train a hatched network than what it takes to train one snapshot.

In addition, Figure 6.6 shows that MotherNets does not only scale better in terms of

training time, but also it scales better in terms of accuracy. As we add more networks to

the ensemble, MotherNets keeps improving its error rate by nearly 2 percent while SE

actually becomes worse by more than 0.5 percent. The declining accuracy of SE as the

size of the ensemble increases has also been observed in the past, where by increasing

the number of snapshots above six results in degradation in performance (i.e., test error

rate) (Huang et al. 2017a).

Finaly, Figure 6.6 shows that di↵erent cluster settings for MotherNets allow us to achieve

di↵erent performance balances while still providing robust and predictable navigation
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of the tradeo↵. In this case, with g=8 accuracy improves consistently across all points

(compared to g=1) at the cost of extra training time.

6.5.3 Parallel Training

Deep learning pipelines rely on clusters of multiple GPUs to train computationally-

intensive neural networks. MotherNets continue to improve training time in such cases

when an ensemble is trained on more than one GPUs. We show this experimentally.

To train an ensemble of multiple networks, we queue all networks that are ready to be

trained and assign them to available GPUs in the following fashion: If the number of

ready networks is greater than free GPUs, then we assign a separate network to every

GPU. If the number of ensemble networks available to be trained are less than the

number of idle GPUs, then we assign one network to multiple GPUs dividing idle GPUs

equally between networks. In such cases, we adopt data parallelism to train a network

across multiple machines (Dean et al. 2012).

We train on a cluster of 8 Nvidia K80 GPUs and vary the number of available GPUs

from 1 to 8. The training hyperparameters are the same as described in Section 3.

Figure 6.8 and Figure 6.9 show the time to train the V5 and D5 ensembles respectively

across FD, SE, and MotherNets. We observe that compared to Snapshot Ensembles,

MotherNets (g=1) scale better as we increase the number of GPUs. The reason for this

is that after the MotherNet has been trained, the rest of the ensemble networks are all

ready to be trained. They can then be trained in a way that minimizes communication

overhead by assigning them to as distinct set of GPUs as possible. Snapshot Ensembles,

on the other hand, are generated one after the other. In a parallel setting this boils

down to training a single network across multiple GPUs, which incurs communication

overhead that increases as the number of GPUs increases (Keuper and Preundt 2016).

6.5.4 Improving Cloud Training Cost

One approach to speed up training of large ensembles is to utilize more than one ma-

chines. For example, we could train k individual networks in parallel using k machines.
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While this does save time, the holistic cost in terms of energy and resources spent is

still linear to the ensemble size.

One proxy for capturing the holistic cost is to look at the amount of money one has to

pay on the cloud for training a given ensemble. In our next experiment, we compare all

approaches using this proxy. Figure 6.10 shows the cost (in USD) of training on four

cloud instances across two cloud service providers: (i) M1 that maps to AWS P2.xlarge

and Azure NC6, and (ii) M2 that maps to AWS P3.2xlarge and Azure NCv3. M1 is

priced at USD 0.9 per hour and M2 is priced at USD 3.06 per hour for both cloud

service providers (Amazon 2019; Microsoft 2019).

6.5.5 Analyzing Ensemble Diversity

Next, we analyze how diverse are MotherNets ensembles compared to SE and FD.

Ensembles and Predictive Diversity. Theoretical results suggest that ensembles

of models perform better when the models’ predictions on a single example are less

correlated. This is true under two assumptions: (i) models have equal correct classifica-

tion probability and (ii) the ensemble uses majority vote for classification (Krogh and

Vedelsby 1994; Rosen 1996; Kuncheva and Whitaker 2003). Under ensemble averag-
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ing (the method we use to combine ensemble networks’ predictions), no analytical proof

that negative correlation reduces error rate exists, but lower correlation between models

can be used to create a smaller upper bound on incorrect classification probability.

To establish this smaller upper bound, we can analyze how model covariance e↵ects en-

semble performance by using Chebyshev’s Inequality to bound the chance that a model

predicts an example incorrectly. By showing that lower covariance between models

makes this bound on the probability smaller, we give an intuitive reason why ensembles

with lower covariance between models perform better. The proof shows as well that

the average model’s predictive accuracy is important; finally, no assumptions need to

be made for the proof to hold. The individual models can be of di↵erent quality and

have di↵erent chances of getting each example correct.

Given a fixed training dataset, let Yi be the softmax value of model i in the ensemble

for the correct class, and let Ŷ = 1
m

Pm
i=1 Yi be the ensemble’s average softmax value on

the correct class. Both are random variables with the randomness of Ŷ and Yi coming

through the randomness of neural network training. Under the mild assumption that

E[Ŷ ] > 1
2 , so that the a one vs. all softmax classifier would say on average that

the correct class is more likely, than Chebyshev’s Inequality bounds the probability of

incorrect prediction. Namely, the correct prediction is made with certainty if Ŷ � 1
2

and so the probability of incorrect prediction is less than

P (|Ŷ � E[Ŷ ]| � E[Ŷ ]� 1

2
)  V ar(Ŷ )

(E[Ŷ ]� 1
2)

2

From the form of the equation, we immediately see that keeping the average model

accuracy E[Yi] high is important, and that degradation in model quality can o↵set

reductions in variance. Since the variance of Ŷ decomposes into 1
m2 (

Pm
i=1 V ar(Yi) +

P
i 6=i0 Cov(Yi, Yi0)), we see that low model covariance keeps the variance of the ensemble

low, and that models which have which have high covariance with other models provides

little benefit to the ensemble.

Rapid Ensemble Training Methods. For MotherNets, as well as for all other com-

pared techniques for ensemble training, the training procedure binds the models together
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Figure 6.11: MotherNets (with g=1) train ensembles with lower model covariances
compared to Snapshot Ensembles.

to decrease training time. This can have two negative e↵ects compared to independent

training of models:

1. by changing the model’s architecture or training pattern, the technique a↵ects

each model’s prediction quality (the model’s marginal prediction accuracy su↵ers)

2. by sharing layers (TN), attempted softmax values (KD), or training epochs (SE,

MN), the training technique creates positive correlations between model errors.

We compare here the magnitude of these two e↵ects forMotherNets and Snapshot En-

sembles when compared to independent training of each model on CIFAR-10 using V5.

Individual Model Quality. For both SE and MN, the individual model accuracy

drops, but the e↵ect is more pronounced in SE than MN. The mean misclassification

percentage of the individual models for V5 using FD, MN and SE are 8.1%, 8.4% and

9.8% respectively. The poor performance of SE in this area is due to its di�culty in

consistently hitting performant local minima, either because it overfits to the training

data when trained for a long time or because its early snapshots need to be far away

from the final optimum to encourage diversity.

Model Variance. Our goal in assessing variance is to see how the training procedure

a↵ects how models in the ensemble correlate with each other on each example. To

do this, we train each of the five models in V 5 five times under MN, SE, and FD.
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Figure 6.12: Shared MotherNets improve inference time by 2⇥ for the V5 ensemble.

Letting Yij be the softmax of the correct model on test example j using model i, we

then estimate V ar(Yij) for each i, j and Cov(Yij , Yi0j) for each i, i0, j with i 6= i0 using

the sample variance and covariance. To get a single number for a model, instead of

one for each test example, we then average across all test examples, i.e. Cov(Yi, Yi0) =
1
n

Pn
j=1 Cov(Yij , Yi0j). For total variance numbers for the ensemble, we perform the

same procedure on Yj = 1
5

P5
i=1 Yij .

Figure 6.11 shows the results. As expected, independent training between the models

in FD makes their corresponding covariance 0 and provides the greatest overall variance

reduction for the ensemble, with ensemble variance at 0.0051. For both SE and MN, the

covariance of separate models is non-zero at around 0.009 per pair of models; however,

it is also significantly less than the variance of a single model. As a result, both MN and

SE provide significant variance reduction compared to a single model. Whereas a single

model has variance around 0.026, MN and SE provide ensemble variance of 0.0125 and

0.0130 respectively.

Takeaways. Since both SE and MN train nearly as fast as a single model, they provide

variance reduction in prediction at very little training cost. Additionally, for MN, at the

cost of higher training time, one can create more clusters and thus make the training

of certain models independent of each other, zeroing out many of the covariance terms

and reducing the overall ensemble variance. When compared to each other, MN with

g=1 and SE have similar variance numbers, with MN slightly lower, but MotherNets
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has a substantial increase in individual model accuracy when compared to Snapshot

Ensembles. As a result, its overall ensemble performs better.

6.5.6 Enabling Fast Ensemble Inference

Figure 6.12 shows how shared-MotherNets improves inference time for an ensemble of 5

variants of VGGNet as described in Table 1. This ensemble is trained on the CIFAR-10

data set. We report both overall ensemble test error rate and the inference time per

image. We see an improvement of 2⇥ with negligible loss in accuracy. This improve-

ment is because shared-MotherNets has a reduced number of parameters requiring less

computation during inference time. This improvement scales with the ensemble size.
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7
Conclusion and Future Work

This thesis presented Computation-Cautious Machine Learning Systems that improve

various stages of the machine learning pipeline. The core intuition is to address the ex-

pensive bottleneck of repeated data movement and computation prevalent in machine

learning pipelines. Computation-Cautious Machine Learning Systems identify opportu-

nities to reuse, demystify, and share computation and data movement at various phases

of machine learning pipelines. By doing so, they significantly speed up data exploration,

improve model design under resource constraints, and establish a new Pareto frontier

for the accuracy-training time tradeo↵ of deep neural network ensembles.

Future Directions

Expanding Scope of Tasks and Models. This thesis explores the application of

Computation-Cautious Machine Learning Systems extensively to image classification

using fully-connected and convolutional neural networks. There are opportunities to

expand both the scope of tasks and models to apply Computation-Cautious Machine

Learning Systems. For instance, we can expand Deep Collider to include (i) hetero-
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geneous ensembles (e.g., various ratios of width-equivalent and depth-equivalent net-

works), (ii) arbitrary network architectures (including using network architecture search

approaches), and (iii) application domains other than image classification such as object

detection, machine translation, kernel methods, and deep generative models. Similarly,

the paradigm of sharing computation and data movement between di↵erent models, as

introduced in MotherNets, can be explored to train ensembles for object localization,

machine translation, and time series prediction. Finally, MotherNets that enables fast

training of a large set of heterogeneous networks can be explored in contexts other

than ensemble learning that train multiple networks. These scenarios include network

architecture search and hyperparameter tuning.

Feature Visualization. In addition to expanding the scope of tasks and models, we

can extend the evaluation of MotherNets and Deep Collider to include visual analysis

of features learned by di↵erent layers of the neural network models (Zeiler and Fergus

2014). In the case of MotherNets, this can provide a human-interpretable understanding

of the diversity between the models. In the case of the Deep Collider, this can serve as

yet another metric to understand the relative rank of various designs.

Understanding Model Design for Emerging Hardware. Recently, new hardware

is being developed for deep learning. This hardware ranges from accelerators (such as

Tensor Processing Units (TPU) by Google and Deep Learning Units (DLU) by Fujitsu)

to hardware that uses quantum and photonics paradigms to improve computers’ capa-

bilities to move data and perform computation on it. For instance, photonics-electronics

hybrid computers promise to provide orders of magnitude higher bandwidth between

memory and compute than existing GPUs. Computation-Cautious Machine Learning

Systems study and model various tradeo↵s between compute and data movement and

there are opportunities to extendx them to emerging hardware. There are important

challenges of figuring out how to design, train, and deploy models (that are currently

intended for existing hardware) to utilize these new capabilities properly: (i) How does

the relationship between the size of a deep learning model – width, depth, and the num-

ber of parameters – and the resources it requires changes with new hardware? (ii) How

to e↵ectively distribute model training between di↵erent compute nodes? And (iii) How

to set training hyperparameters such as batch size, weight decay, and learning rate?
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Enabling Machine Learning for Low Resource Scenarios. There are challenges of

e�ciently applying machine learning to low-resource scenarios, e.g., in the global south

with drastically less compute and memory resources available per capita and unreliable

power and internet connectivity. One direction would be to design systems that coalesce

various operators in a deep learning model to reduce both data access and computation

during training and inference. Another direction is to design systems that can train and

deploy deep learning models in unpredictable environments with frequent power cuts

and variable compute resource availability. Finally, there are opportunities to conduct

large-scale research in characterizing the diversity in training and deployment devices

around the globe and the implications this has for model and hardware design. Deep

Collider, for instance, can help study the holistic design space between models and

hardware design, specifically in low-resource scenarios.

Incorporating Responsibility in Machine Learning Pipelines. When we apply

machine learning pipelines to user-facing applications, then there are new challenges to

consider. For example, when we use deep learning to make decisions that can directly im-

pact humans, it is crucial to understand how deep learning models made these decisions

and why. There are several opportunities for Deep Collider to understand better the

relationship between various model designs and robustness and interpretability (Wasay

et al. 2021). We can expand Deep Collider to include robustness, fairness, and inter-

pretability metrics. In addition to this, there are opportunities for designing systems

that can e�ciently track the end-to-end provenance of machine learning pipelines mak-

ing it easier to verify the degree of fairness they exhibit. Here, Computation-Cautious

Machine Learning Systems’ framework to e�ciently use data movement and compu-

tation is ever more crucial to maintain interactivity as users debug and understand

deployed pipelines.

Overall, this thesis paves the way for thinking holistically about machine learning

pipelines, where we bring the resources required to run these pipelines – time, memory

usage, cloud cost – to the forefront, along with the quality of the model. As machine

learning pipelines scale to more data, to more applications, and ultimately to more peo-

ple, a holistic approach to these pipelines enables more e�cient utilization of resources

while achieving desired outcomes.
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